
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

09- Notation-Formal & UML Intro

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Concurrent & distributed systems

ßFSA

ßPetri nets

ßTrace specifications
ßa trace is a sequence of procedure or function calls and
return values from those calls
ßproposed by David Parnas, 1977

ßformalized by McLean, 1984

ßfurther developed by Dan Hoffman, Rick Snodgrass, etc

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Trace specifications

 NAME
 label

 SYNTAX
 name: __type ... __type fi return_value_type

 SEMANTICS
assertions of the form:
 L(T) -- asserts that T is a legal trace
 V(T) = value -- is the value returned if T

 ends in a function call

ßoperator precedence
≡ < “ = ≥ >
 ÿ
& ~ |
fi ¤

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Trace specifications

T1 ≡ T2 fi

("T) ((L(T1⋅T) fi L(T2⋅T)) &

 (T is not empty fi (

 (T1⋅T has a value ¤ T2⋅T has a value) &

 (T1⋅T has a value fiV(T1⋅T)= V(T2⋅T))))

note ("S,T) (L(S⋅T) fi L(S))

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example
NAME

stack

SYNTAX
push: integer;
pop: ;
top: fi integer;

SEMANTICS

/*1*/ ("T,i) (L(T) fi L(T⋅push(i))

/*2*/ ("T) (L(T⋅top) ¤ L(T⋅pop)

/*3*/ ("T,i) (T ≡T⋅push(i)⋅pop)

/*4*/ ("T) (L(T⋅top) fi T ≡ T⋅top)

/*5*/ ("T,i) (L(T) fiV(T⋅push(i)⋅top)=i)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interpretation

/*1*/ ("T,i) (L(T) fi L(T⋅push(i))

/*1*/ unbounded stack

/*2*/ ("T) (L(T⋅top) ¤ L(T⋅pop)

/*2*/ top cause no error iff pop causes no
error

/*3*/ ("T,i) (T ≡T⋅push(i)⋅pop)

/*3*/ push followed by pop does not affect
the future behavior

/*4*/ ("T) (L(T⋅top) fi T ≡ T⋅top)

/*4*/ top does not affect the behavior

/*5*/ ("T,i) (L(T) fiV(T⋅push(i)⋅top)=i)

/*5*/ how to compute the value of top

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example - using /*3*/ and /*5*/

note: push(i)⋅push(j)⋅push(k)⋅pop⋅pop⋅top fi top= i

By /*3*/ ("T,i) (T ≡T⋅push(i)⋅pop)

By /*5*/ ("T,i) (L(T) fiV(T⋅push(i)⋅top)=i)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Heuristics

ßdefine normal forms

ßstructure semantics

ßuse predicates

ßdevelop specs incrementally

ßuse macros

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comparison

ß trace specifications
ßbased on call sequence

ßno “hidden functions”

ßnatural application to inter-
process communication

ßuniversal & existential
quantifiers

ßalgebraic specifications
ßbased on “type of interest,”
therefore maybe in terms of
objects not visible to user

ßrequires “hidden functions”

ßcannot handle concurrency

ßno existential quantification

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Property-oriented techniques

ßAbstract-data-type specification languages
ßAxiomatic: Hoare, OBJ, Anna, Larch, and
algebraic, e.g., Clear, ActOne, Aspeque

ßConcurrent and distributed systems
specification languages: temporal logic,
Lamport, LOTOS

ßSemi-formal
ßER diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Logic Specifications

ßExpressed using formulas under a first order
logic theory (usually with quantification), e.g.,
ß$ j [1 ≤ j ≤ s.top| t.data[j]=s.data[j]]
ßTypically expressed as pre- and post-conditions,
e.g.,
ßLet P be a sequential program

ßwith inputs (i0,i1, ... ,in) and outputs (o0,o1, ... ,om)

ßPre (i0,i1, ... ,in) P Post(o0,o1, ... ,om,i0,i1, ... ,in) is a
property

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

“Hoare” example

type stack =

 record top: integer

 data:array [1 ... 100] of integer

 end

t:= push(s, i)

true{t:= push(s, i)} $ j [1≤ j≤s.top| t.data[j]=s.data[j]

 Ÿ t.data[t.top] = i

 Ÿ t.top =s.top +1]
precondition

post condition
“program”

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

“Hoare” example

Logic specification:

true {t:= push(s, i)} $ j [1 ≤ j ≤ s.top|
t.data[j]=s.data[j]

 Ÿ t.data[t.top] = I Ÿ t.top =s.top +1]

Operational specification

{true} push (S0, I) {" J, 1 < J ≤ S0.top

 S0.data [J] = S.data [J] Ÿ
 S.top = S0.top + 1 Ÿ
 S.Data [S.top] = I }

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Algebraic Specification

Stack (S) Ÿ Integer (I) …

 (1) Top (Push (S, I)) = I

 (2) Top (Create) = Integer Error

 (3) Pop (Push (S, I)) = S

 (4) Pop (Create) = Stack Error

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Larch

ßThe Larch Family of Specification Languages
ßJohn Guttag, James Horning, Jeannette Wing IEEE
Software, 1985

ßLarch Shared Language
ßCommon language for formally representing models

ßLarch Interface Language
ßInterface between the shared language and the target
programming language
ß Larch/Pascal

ß Larch/CLU

ßSpecific implementation language

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

PROGRAM UNIT
(MODULE, TYPE, FUNCTION,PROCEDURE)

INTERFACE
SPECIFICATION

ROOT
TRAIT

TRAITTRAIT TRAIT

TRAIT

. . .

.

Programming
Language

(Pascal, Clu, ...)

Larch
Interface Language

(Larch/Pascal, Larch/Clu, ...)

Larch
Shared Language

Larch

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Terminology

 SPECIFICATION PROGRAMMING
 TERM LANGUAGE TERM

Operator Function

Sort Type

Term Expression

Trait Module (ADT), Function,
 Procedure type

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Goals of Larch

ßComposability
ßCommon specifications from existing specifications

ßLibrary or handbook

ßReadability

ßLocalize programming language dependence
ßGeneral model is very complex so use different
language specific models

ßAutomated Support
ßConstruction tool

ßSyntactic checking

ßSemantic checking

ßSupport incompleteness

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Trait

Introduces
 signature of the operation
 (sort checking)

Constrains
 constrains the operations &
 relations among the operators

theory - set of theorems that can be proved about the
operator done by substitution, using rules of first order
predicate calculus with equality

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Examples

Container: trait

 introduces

 new: Æ C

 insert: C, E Æ C
 constrains C so that

 C generated by [new, insert]

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Examples

IsEmpty: trait
 assumes Container
 introduces
 isEmpty: C Æ Bool
 constrains isEmpty, new, insert
 so that for all [c :C, e :E]
 isEmpty(new) = true
 isEmpty(insert(c,e)) = false
 implies converts [isEmpty]

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Extended example

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Constructing traits

Container

isEmpty

Next

Cardinal

Size

Total
Order

Mulitset

Priority Queue

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interface Languages

ß“bridge” between shared language and implementation
language

ß“Two-tiered” specification approach: principal innovation
of Larch w/r/t algebraic specification languages

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interface Languages

ßLarch/L incorporates “flavor” of L
ß semantics, keywords

ß makes it easier for those who know L to write provable
specs

ß just need to adapt existing shared traits from Library (in
theory...)

ßLarch/L languages designed to support data abstraction,
even if language L doesn’t directly support it (Pascal, C,
C++)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Larch/Pascal specification

type Bag exports bagInit, bagAdd, bagRemove, bagChoose
based on sort Mset from MultiSet with [integer for E]
procedure bagInit(var b:Bag)

modifies at most [b]
ensures bpost = { }

procedure bagAdd(var b:Bag; e; integer)
requires numElements(insert(b,e)) ≤ 100
modifies at most [b]
ensures bpost = insert(b,e)

procedure bagRemove(var b:Bag; e; integer)
modifies at most [b]
ensures bpost = delete(b,e)

procedure bagChoose(var b:Bag; e; integer): boolean
modifies at most [b]
ensures if ~ isEmpty (b)

 then bagChoose & count (b, epost)>0
 else ~ bagChoose & modifies nothing
End Bag

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Pascal implementation of BagAdd
prodedure bagAdd(var B:Bag;e:integer);

var i, lastEmpty: 1...MaxBagSize
begin

i:= 1;
while ((i < MaxBagSize) and (b.elems[i]<>e)) do

begin
if b.counts[i] = 0 then LastEmpty:=i;
i:= i+1;

end;
if b.elems[i] = e

then b.counts[i]:= b.counts[i]+1;
else begin
if b.counts[i]=0 then LastEmpty:=i;
b.elems[LastEmpty]:=e;
b.counts[LastEmpty]:=1;

end;
end[bagAdd];

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Conclusions

ß Interesting attempt to address:
ßreadability/writability of formal specs
ßlarge, multi-lingual environment issues

ßRelationship between shared and interface languages
complex and unclear
ßRelationship between interface and implementation

languages not as strong as one would like
ß “Software tool support needed” (syntax-directed editors,

browsers, theorem-provers, etc.)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Current Status of Formal Methods

ßStrong theoretical foundation

ßSome practical use, especially in Europe

ßCurrent Languages trying to be more practical

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How effective are these methods?

ßWing's study of the Library Problem
ßa small library database
ßtransactions

checkout/return book
add/remove book
get a list of books
ß author
ß subject
ß borrower

get date/borrower for book

ßusers
ßstaff
ßborrowers

ßrestrictions
ßavailability
ßno book available & checked out
ß# books borrowed ≤max

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Analysis

ßSpecification approaches
ß informal
ßAI
ß logic
ßexecutable/non-executable

ßComparisons
ß formality
ß life-cycle phase
ßoperational vs. behavioral
ßmodularity
ß readability
ßcompleteness

ßNot considered
ßconcurrency
ß reliability
ß fault-tolerance
ßsecurity

ß initialization
ßwhat's the initial state of the

library?

ßmissing operations
ßneed more transactions?

ßerror handling
ßwhat to do with errors?
ßcheckout, return, add, remove,

"type errors"

ßmissing constraints
ßmore than one copy in library,

checked out

ßstate
ßwhat to record, change?

ß “non-functional” specification
ßhuman factors, liveness, time

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Conclusions

ßmethods do not differ radically
ß style
ßmost use pre- and post-conditions for specifying behavior
ßalgebraic & set-theoretic most common for specifying data
(operational)
ßmodel-oriented (operational) most common approach

ß formal specs can
ß identify diff in informal specs
ßhandle simple, small problems
ßspecify sequential functional behavior

ßChallenges
ßscaling
ßnon-functional behavior
ßcombining techniques
ßtools
ß integrating specification into the lifecycle

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Note - UML overheads are adapted from

ß “Introduction to UML: Structural and Use Case Modeling,”
Cris Kobryn, Co-Chair UML Revision Task Force Object
Modeling with OMG UML Tutorial Series © 1999-2001 OMG
and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-
Packard, IntelliCorp, Kabira Technologies, Klasse Objecten,
Rational Software, Telelogic, Unisys
ß “Behavioral Modeling,” Gunnar Övergaard, Bran Selic,

Conrad Bock and Morgan Björkande, UML Revision Task
Force, Object Modeling with OMG UML Tutorial Series ©
1999-2001 OMG and Contributors: Crossmeta, EDS, IBM,
Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies,
Klasse Objecten, Rational Software, Telelogic, Unisys
ßMACIASZEK, L.A. (2001): Requirements Analysis and

System Design. Developing Information Systems with UML,
Addison Wesley Copyright © 2000 by Addison Wesley
ß “Analysis and Design with UML,” Rational Copyright © 1997

by Rational Software Corporation
ß “Practical UML: A hands-on introduction for developers,”

Copyright © 2002 TogetherSoft, Inc.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

UML Overview

ßThe UML is a graphical language for
ßspecifying

ßvisualizing

ßconstructing

ßdocumenting

ßthe artifacts of software systems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

UML Goals

ßDefine an easy-to-learn but semantically rich
visual modeling language
ßUnify the Booch, OMT, and Objectory modeling
languages
ßInclude ideas from other modeling languages
ßIncorporate industry best practices
ßAddress contemporary software development
issues
ßscale, distribution, concurrency, executability, etc.

ßProvide flexibility for applying different processes
ßEnable model interchange and define repository
interfaces

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why is UML important?

ßAnalogy
ßArchitects design buildings
ßBuilders use the designs to create buildings
ßBlueprints are the standard graphical language
that both architects and builders must learn as
part of their trade

ßUML has emerged as the software blueprint
language for analysts, designers, and
programmers alike
ßprovides a common vocabulary to talk about
object-oriented software design.

Copyright © 2002 TogetherSoft, Inc

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

O-O problem solving

ßunderlying tenet begins with the construction of a
model
ßa model is an abstraction of the underlying problem
ßthe domain is the actual world from which the problem
comes

ßModels consist of objects that interact by sending
each other messages
ßhave things they know (attributes) and things they can
do (behaviors or operations)
ßvalues of an object's attributes determine its state

ßClasses are the "blueprints" for objects
ßa class wraps attributes (data) and behaviors
(methods or functions) into a single distinct entity
ßobjects are instances of classes.

Copyright © 2002 TogetherSoft, Inc

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Unifying Concepts in UML

ßclassifier-instance dichotomy
ße.g., an object is an instance of a class OR
a class is the classifier of an object

ßspecification-realization dichotomy
ße.g., an interface is a specification of a class
OR a class is a realization of an interface

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Foundation Concepts

ßBuilding blocks - the basic building blocks of UML are:
ßmodel elements (classes, interfaces, components, use cases, etc.)
ß relationships (associations, generalization, dependencies, etc.)
ßdiagrams (class diagrams, use case diagrams, interaction diagrams,

etc.)

ßWell-formedness rules
ßWell-formed: indicates that a model or model fragment adheres to all

semantic and syntactic rules that apply to it.
ßUML specifies rules for:

ßnaming
ßscoping
ßvisibility
ß integrity
ßexecution (limited)

ßHowever, during iterative, incremental development it is expected
that models will be incomplete and inconsistent.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is use case modeling?

ßuse case model
ßa view of a system that emphasizes the behavior as it
appears to outside users. A use case model partitions
system functionality into transactions (‘use cases’) that
are meaningful to users (‘actors’).

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use-Case diagrams

ßemphasis is on what a system does rather than
how
ßUse case diagrams are closely connected to
scenarios
ßa scenario is an example of what happens when
someone interacts with the system, e.g.,
"A patient calls the clinic to make an appointment for
a yearly checkup. The receptionist finds the nearest
empty time slot in the appointment book and
schedules the appointment for that time slot."

ßa use case is a summary of scenarios for a single
task or goal
ßan actor is who or what initiates the events
involved in that task

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Modeling: Core Elements

Construct Description Syntax

use case A sequence of actions, including
variants, that a system (or other
entity) can perform, interacting with
actors of the system.

actor A coherent set of roles that users
of use cases play when interacting
with these use cases.

system
boundary

Represents the boundary between
the physical system and the actors
who interact with the physical
system.

UseCaseName

ActorName

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example

ßMake Appointment
ßuse case for the medical clinic
ßactor is a Patient
ßconnection between actor and use case is a
communication association (or communication for
short)

Patient

make appointmentactor

communication

use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Construct Description Syntax

association The participation of an actor in a use
case. i.e., instance of an actor and
instances of a use case communicate
with each other.

generalization A taxonomic relationship between a
more general use case and a more
specific use case.

extend A relationship from an extension use
case to a base use case, specifying
how the behavior for the extension
use case can be inserted into the
behavior defined for the base use
case.

Use Case Modeling: Core Relationships

<<extend>>

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

An example

ßThe ESU University wants to computerize their registration
system
ßThe Registrar sets up the curriculum for a semester
ßOne course may have multiple course offerings

ßStudents select 4 primary courses and 2 alternate courses
ßOnce a student registers for a semester, the billing system is
notified so the student may be billed for the semester
ßStudents may use the system to add/drop courses for a period
of time after registration
ßProfessors use the system to receive their course offering
rosters
ßUsers of the registration system are assigned passwords
which are used at logon validation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Actors

ßAn actor is someone or some thing that must interact
with the system under development

Registrar

Professor

Billing System

Student

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Maintain ScheduleMaintain Curriculum Request Course Roster

Use Cases

ßA use case is a pattern of behavior the system exhibits
ßEach use case is a sequence of related transactions
performed by an actor and the system in a dialogue

ßActors are examined to determine their needs
ßRegistrar -- maintain the curriculum

ßProfessor -- request roster

ßStudent -- maintain schedule

ßBilling System -- receive billing information from
registration

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Documenting Use Cases

ßA flow of events document is created for each use
cases
ßWritten from an actor point of view

ßDetails what the system must provide to the actor when
the use cases is executed

ßTypical contents
ßHow the use case starts and ends

ßNormal flow of events

ßAlternate flow of events

ßExceptional flow of events

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Registrar

Professor

Billing System

Student

Maintain Schedule

Maintain Curriculum

Request Course Roster

Use Case Diagram

ßUse case diagrams are created to visualize the
relationships between actors and use cases

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Maintain Curriculum Flow of Events

ßThis use case begins when the Registrar logs onto the
Registration System and enters his/her password. The
system verifies that the password is valid (E-1) and prompts
the Registrar to select the current semester or a future
semester (E-2). The Registrar enters the desired semester.
The system prompts the Registrar to select the desired
activity: ADD, DELETE, REVIEW, or QUIT.
ß If the activity selected is ADD, the S-1: Add a Course

subflow is performed.
ß If the activity selected is DELETE, the S-2: Delete a Course

subflow is performed.
ß If the activity selected is REVIEW, the S-3: Review

Curriculum subflow is performed.
ß If the activity selected is QUIT, the use case ends.
ß ...

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Documenting use cases

ßBrief Description

ßActors involved

ßPreconditions necessary for the use case to start

ßDetailed Description of flow of events that includes:

ßMain Flow of events, that can be broken down to show:

ßSubflows of events (subflows can be further divided into smaller
subflows to improve document readability)

ßAlternative Flows to define exceptional situations

ßPostconditions that define the state of the system after the
use case ends

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Narrative use case specification

If the use case was successful, the Registrar has
accessed the Add a Course function

Postconditions

The Registrar activates the Delete, Review, or
Quit functions

Alternative Flows

The system enters the Add a Course subflowMain Flow

Registrar has a valid password (E-1), has selected a
semester default or E-2), and has selected the Add (S-
1) function at the system prompt

Preconditions

RegistrarActors

This use case allows a Registrar to enter a new course.
…

Brief Description

Add a course to the curriculumUse Case

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Register for courses

<<uses>>

Logon validation
<<uses>>

Maintain curriculum

Uses and Extends Relationships

ßAs the use cases are documented, other use case
relationships may be discovered
ßA uses relationship shows behavior that is common to
one or more use cases

ßAn extends relationship shows optional behavior

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

University Enrolment - Maciaszek

ß The university offers

ßUndergraduate and postgraduate degrees

ßTo full-time and part-time students

ß The university structure

ßDivisions containing departments

ßSingle division administers each degree

ßDegree may include courses from other divisions

ßUniversity enrolment system

ß Individually tailored programs of study

ßPrerequisite courses

ßCompulsory courses

ßRestrictions
ß Timetable clashes

ßMaximum class sizes, etc.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

University Enrolment (cont)

ß The system is required to
ß Assist in pre-enrolment activities
ß Handle the enrolment procedures

ß Pre-enrolment activities
ß Mail-outs of
ß Last semester's examination grades to students
ß Enrolment instructions

ß During enrolment
ß Accept students' proposed programs of study
ß Validate for prerequisites, timetable clashes, class sizes,

special approvals, etc.
ß Resolutions to some of the problems may require

consultation with academic advisers or academics in charge
of course offerings

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example 4.12

Provide Enrolment Instructions

Student Office

Provide Examination Results

Student

Pre-enrolment activities
ßMail-outs of

ßLast semester's examination grades to
students
ßEnrolment instructions

<<extend>>

Data Entry
Person

Enter Program of Study

Registrar Office

Validate Program of Study

ßDuring enrolment
ßAccept students'
proposed programs of
study
ßValidate

<<include>>

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

When to model use cases

ßModel user requirements with use cases.

ßModel test scenarios with use cases.

ßIf you are using a use-case driven method
ßstart with use cases and derive your structural and
behavioral models from it.

ßIf you are not using a use-case driven method
ßmake sure that your use cases are consistent with your
structural and behavioral models.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Modeling Tips

ßMake sure that each use case describes a significant chunk of
system usage that is understandable by both domain experts and
programmers
ßWhen defining use cases in text, use nouns and verbs accurately

and consistently to help derive objects and messages for interaction
diagrams (see Lecture 2)
ßFactor out common usages that are required by multiple use cases
ß If the usage is required use <<include>>
ß If the base use case is complete and the usage may be optional,

consider use <<extend>>

ßA use case diagram should
ßcontain only use cases at the same level of abstraction
ß include only actors who are required

ßLarge numbers of use cases should be organized into packages

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Use Case Realizations

ßThe use case diagram presents an outside view of the
system

ßInteraction diagrams describe how use cases are
realized as interactions among societies of objects

ßTwo types of interaction diagrams
ßSequence diagrams

ßCollaboration diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

an asynchronous message

a synchronous message

simple message return (optional)

simple message which may be synchronous or
asynchronous

MeaningSymbol

sequence diagram

ßan interaction diagram that details how operations are carried
out
ßwhat messages are sent and when
ßare organized according to time
ßtime progresses as you go down the page
ßobjects involved in the operation are listed from left to right
according to when they take part in the message sequence.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

 : Student
registration

form
registration

manager
math 101

1: fill in info

2: submit

3: add course(mary, math 01)

4: are you open?

5: are you open?

6: add (mary)
7: add (mary)

math 101
section 1

Sequence Diagram

ßA sequence diagram displays object interactions
arranged in a time sequence

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example 4.17 – Maciaszek

Enter Program of Study
use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Collaboration Diagrams

ßalso interaction diagrams
ßfocus on object roles instead of the times that
messages are sent

 : Registrar

course form :
CourseForm

theManager :
CurriculumManager

aCourse :
Course

1: set course info
2: process

3: add course

4: new course

