CMPSCI520/620

COMPUTER
)SCIENCE

Rick Adrion

UNIVERSITY:OF MASSACHUSETTS AMRERST4-DE

09- Notation-Formal & UML Intro

POMPUTER cee e
'SCIENGE Trace specifications

NAME
label
SYNTAX
name: __type ... __type = return_value_type
SEMANTICS
assertions of the form:
L(T) -- asserts that T is a legal trace

V(T) = value -- is the value returned if T
ends in a function call

=operator precedence
=< “=2>
-
& ~ |
= [

UNIVERSITY; OF MASSACHUSETTS-AMHERST + DEP:

©Rick Adrion 2003 (except where noted)

CONPUTER Concurrent & distributed systems

=FSA
=Petri nets
=Trace specifications
=a trace is a sequence of procedure or function calls and
return values from those calls

=proposed by David Parnas, 1977

=formalized by McLean, 1984

=further developed by Dan Hoffman, Rick Snodgrass, etc

UNIVERSITY: OFMASSACHUSETTS AMHERST +4DE

PIMENE Trace specifications

M=T2=
(vT) (L(T1-T) = L(T2.T)) &
(T is not empty = (
(T4-T has avalue ' T,-T has a value) &
(T4-T has a value =V(T,-T)= V(T,T))))

note (VS,T) (L(S-T) = L(S))

UNIVERSITY-OF MASSACHUSETTS AMHERST 5~ DEP:

CMPSCI520/620

CONPUTER Example

NAME
stack

SYNTAX
push: integer;
pop:)
top: = integer;

SEMANTICS
1% (VT,i) (L(T) = L(T-push(i))
2%/ (VT) (L(T-top) L L(T-pop)
1+3% (VT,i) (T =T-push(i)-pop)
*4%| (VT) (L(Ttop) = T=T-op)
/*5%/ (VT,i)_(L(T) =V(T-push(i)-top)=i)

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER:?;

CONPUTER Example - using 13+ and 5%/

note:

By /*3*/ (VT,i) (T =T-push(i)-pop)

By /*5*/ (VT,i) (L(T) =V(T-push(i)-top)=i)

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DEP;&?

©Rick Adrion 2003 (except where noted)

COMPUTER
)SCIENCE

Interpretation

1% (VT,i) (L(T) = L(T-push(i))
/*1*/ unbounded stack
2% (VT) (L(T-top)O L(T-pop)
[*2*] top cause no error iff pop causes no
error
3% (VT,i) (T =T-push(i)-pop)
/*3*/ push followed by pop does not affect
the future behavior
4% (VT) (L(T-top) = T=T-top)
/*4*[top does not affect the behavior
[*5% (VT,i) (L(T) =V(T-push(i)-top)=i)
/*5*/ how to compute the value of top

UNIVERSITY. OF MASSACHUSETTS - AMHERST: 1D ERARY

COMPUTER
)SCIENCE

Heuristics

=define normal forms
sstructure semantics

=use predicates

=develop specs incrementally
=use macros

UNIVERSITY. OF MASSACHUSETTS ANHERST DEPAR:

CMPSCI520/620

COMPUTER Comparison COMPUTER Property-oriented techniques
=trace specifications =algebraic specifications =Abstract-data-type specification languages

=based on call sequence =based on “type of interest,” aAvi .

therefore maybe in terms of AX|omalt|c. Hoare, OBJ, Anna, Larch, and

objects not visible to user algebraic, e.g., Clear, ActOne, Aspeque
*no “hidden functions” *requires *hidden functions” =Concurrent and distributed systems
*natural application to inter- =cannot handle concurrency specification languages: temporal logic,
process communication Lamport, LOTOS
=universal & existential .
quantifiers =no existential quantification =Semi-formal

=ER diagrams

UNIVERSITY. OF MASSACHUSETTS AMRERST: - DEBAR UNIVERSITY. OF MASSACHUSETTS - AMHERST: 1D ERARY

COMPUTER | ogic Specifications COMPUTER “Hoare” example

=Expressed using formulas under a first order type stack =

logic theory (usually with quantification), e.g., record top: integer
= J [1 Sj < S.t0p| t.data[i]=s.data[i]] data:array [1 ... 100] of integer

. ., end
=Typically expressed as pre- and post-conditions, t:= push(s, i
e.g.,) ’ . , .
t t= h(s, i)} 3 j [1=j<s.top| t.data[j]=s.dat:
=Let P be a sequential program rueit:= push(s, 0} 3] [1<j=s.top| t.data]=s _a.a[j]
swith inputs (i i., ... ,i) and outputs (0,01, -.. ,0.) A tdataltfop] =1
wit |.np.)u ol sl p (09,01, -+ ;0 A ttop =s.top +1]
=Pre (i,iy, ... ,i,) P Post(0,,04, ... ,0.,ip.l1, --- i) IS @ precondition
property
“program”
post condition

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DEEEI?_F‘\

UNIVERSITY. OF MASSACHUSETTS AMHERST - DEPARN

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

COMER “Hoare” example

Logic specification:
true {t:= push(s, i)} 3j [1 =j < s.top|
t.data[j]=s.data[j]
A t.data[t.top] = | A t.top =s.top +1]
Operational specification
{true} push (Sy, 1){Vv J, 1 <J =S,.top
S,.data [J] = S.data [J] A
S.ttop= Sytop+1 A
S.Data [S.top] =1}

UNIVERSITY:OF MASSACHUSETTS AMRERST+- DEBARTMENT: OF+C

COMPUTER
Ssciene Larch

=The Larch Family of Specification Languages

=John Guttag, James Horning, Jeannette Wing IEEE
Software, 1985

=Larch Shared Language
=Common language for formally representing models
=Larch Interface Language
=Interface between the shared language and the target
programming language
= Larch/Pascal
= Larch/CLU

= Specific implementation language

UNIVERSITY; OF MASSACHUSETTS-AMHERST + DEPARTMENT: OF*C

©Rick Adrion 2003 (except where noted)

COMIER Algebraic Specification

Stack (S) A Integer (1) ...

(1) Top (Push (S, 1)) =1

(2) Top (Create) = Integer Error
(3) Pop (Push (S, 1)) =S

(4) Pop (Create) = Stack Error

UNIVERSITY: OF - MASSACHUSETTS AMHERST 4D ERARFMENT: OF

COMPUTER
Ssciene Larch

Programming
Language
(Pascal, Clu, ...)

Larch

Interface Language
(Larch/Pascal, Larch/Clu, ...)

Larch

- -‘/\. Shared Language
T AN .

UNIVERSITY- OF MASSACHUSETTS-AMHERST +- DEPARTMENT OE

CMPSCI520/620

computee Terminology
SCIENCE

SPECIFICATION PROGRAMMING
TERM LANGUAGE TERM
Operator Function
Sort Type
Term Expression
Trait Module (ADT), Function,
Procedure type

UNIVERSITY-OF MASSACHUSETTS AMRERSTS DEP/-‘{@.

computer Trait
SCIENCE
Introduces
signature of the operation
(sort checking)
Constrains

constrains the operations &
relations among the operators

theory - set of theorems that can be proved about the
operator done by substitution, using rules of first order
predicate calculus with equality

©Rick Adrion 2003 (except where noted)

computek Goals of Larch
SCIENCE

=Composability
=Common specifications from existing specifications
sLibrary or handbook

=Readability

=l ocalize programming language dependence

=General model is very complex so use different
language specific models

= Automated Support
=Construction tool
=Syntactic checking
=Semantic checking
=Support incompleteness

UNIVERSITY: OF-MASSACHUSETTS AMHERST: DEP/-‘(_T:F\‘:I.F;-

computr Examples
SCIENCE

Container: trait
introduces
new: —» C
insert: C,E - C
constrains C so that
C generated by [new, insert]

UNIVERSITY. OF MASSACHUSETTS AMHERST: i DEPARENENT

CMPSCI520/620

computr Examples
SCIENCE

IsEmpty: trait
assumes Container
introduces
isEmpty: C — Bool
constrains isEmpty, new, insert
sothatforall[c:C, e E]
isEmpty(new) = true
isEmpty(insert(c,e)) = false
implies converts [isEmpty]

UNIVERSITY:OF MASSACHUSETTS AMRERST4-DE

COMPUTER Constructing traits

Priority Queue

Mulitset

UNIVERSITY, OF MASSACHUSETTS- AMHERST 3 DE

©Rick Adrion 2003 (except where noted)

COMPUTER
)SCIENCE

Extended example

Container (E, C): trait
% head and tail enumerate contents of a C
ineludes InsertGenerated, Integer
introduces
isEmpty: C -> Bool
count: E, C -> Int
__%in _ : E, C => Bool
head: C -> E
tail: ¢ -» C
asserts
C partitiomed by isEmpty, head, tail
forall e, el: E, c: C
isEmpty (empty);
~isEmpty(insert(e, c));
count(e, empty) == 0;
count(e, insert(el, c)) ==
count(e, c) + (if e = el then 1 else 0);
e \in ¢ == count(e, c) > 0;
~isEmpty(c) =>
count (e, insert(head(c), tail(ec)))
= count(e, c)
implies
forall c: C
~isEmpty(c) =» count(head{c), c} = 0;
converts isEmpty, count, “in

UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I:‘(_

COMPUTER
)SCIENCE

Interface Languages

=“bridge” between shared language and implementation
language

=“Two-tiered” specification approach: principal innovation
of Larch w/r/t algebraic specification languages

UNIVERSITY. OF MASSACHUSETTS-AMHERST .+ DE

CMPSCI520/620

COMPUTER Interface Languages

=Larch/L incorporates “flavor” of L
= semantics, keywords
= makes it easier for those who know L to write provable
specs
= just need to adapt existing shared traits from Library (in
theory...)

=Larch/L languages designed to support data abstraction,
even if language L doesn’t directly support it (Pascal, C,
C++)

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER.-}“

CONPUTER Pascal implementation of BagAdd

prodedure bagAdd(var B:Bag;e:integer);
var i, lastEmpty: 1l...MaxBagSize

begin
i:= 1;
while ((i < MaxBagSize) and (b.elems[i]<>e)) do
begin
if b.counts[i] = 0 then LastEmpty:=i;
ir= i+1;
end;
if b.elems[i] = e
then b.counts[i]:= b.counts[i]+1;

else begin
if b.counts[i]=0 then LastEmpty:=i;
b.elems [LastEmpty] :=e;
b.counts[LastEmpty]:=1;
end;
end[bagAdd];

UNIVERSITY; OF MASSACHUSETTS-AMHERST - %

©Rick Adrion 2003 (except where noted)

COMPUTER | arch/Pascal specification

type Bag exports baglnit, bagAdd, bagRemove, bagChoose
based on sort Mset from MultiSet with [integer for E]
procedure baglnit(var b:Bag)
modifies at most [b]
ensures bpost = { }
procedure bagAdd(var b:Bag; e; integer)
requires numElements(insert(b,e)) <100
modifies at most [b]
ensures bpost = insert(b,e)
procedure bagRemove(var b:Bag; e; integer)
modifies at most [b]
ensures bpost = delete(b,e)
procedure bagChoose(var b:Bag; e; integer): boolean
modifies at most [b]
ensures if ~ isEmpty (b)
then bagChoose & count (b, epost)>0
else ~ bagChoose & modifies nothing
End Bag

UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I-‘(

COMPUTER Conclusions

= Interesting attempt to address:
=readability/writability of formal specs
=large, multi-lingual environment issues
=Relationship between shared and interface languages
complex and unclear
= Relationship between interface and implementation
languages not as strong as one would like
=“Software tool support needed” (syntax-directed editors,
browsers, theorem-provers, etc.)

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE&_E

CMPSCI520/620

COMPUTER
)SCIENCE

Current Status of Formal Methods

=Strong theoretical foundation
=Some practical use, especially in Europe
=Current Languages trying to be more practical

UNIVERSITY:OF MASSACHUSETTS AMRERST4-DE

computer Analysis
SCIENCE

= Specification approaches = initialization

= informal =what's the initial state of the
=Al library?
=logic = missing operations
= executable/non-executable .
N =need more transactions?
= Comparisons

=error handling
=what to do with errors?
=checkout, return, add, remove,
"type errors"
= missing constraints

=more than one copy in library,
checked out

= formality
= life-cycle phase
=operational vs. behavioral
=modularity
=readability
=completeness

= Not considered
= concurrency = state
=reliability =what to record, change?
= fault-tolerance = “non-functional” specification
= security = human factors, liveness, time

UNIVERSITY, OF MASSACHUSETTS- AMHERST 3 DE 7

©Rick Adrion 2003 (except where noted)

COMPUTER How effective are these methods?

=Wing's study of the Library Problem
=a small library database
=transactions
checkout/return book
add/remove book
get a list of books
= author
= subject
= borrower
get date/borrower for book

=users
= staff
=borrowers
=restrictions
= availability
=no book available & checked out
=# books borrowed smax

UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I:‘(_

COMPUTER Conclusions

= methods do not differ radically
= style
=most use pre- and post-conditions for specifying behavior

=algebraic & set-theoretic most common for specifying data
(operational)

=model-oriented (operational) most common approach
= formal specs can

=identify diff in informal specs

=handle simple, small problems

=specify sequential functional behavior
=Challenges

=scaling

=non-functional behavior

=combining techniques

=tools

=integrating specification into the lifecycle

UNIVERSITY. OF MASSACHUSETTS-AMHERST .+ DE

CMPSCI520/620

c“ﬂ;‘;ﬂé‘é Note - UML overheads are adapted from

=“Introduction to UML: Structural and Use Case Modeling,”
Cris Kobryn, Co-Chair UML Revision Task Force Object
Modeling with OMG UML Tutorial Series © 1999-2001 OMG
and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-
Packard, IntelliCorp, Kabira Technologies, Klasse Objecten,
Rational Software, Telelogic, Unisys

=“Behavioral Modeling,” Gunnar Overgaard, Bran Selic,
Conrad Bock and Morgan Bjoérkande, UML Revision Task
Force, Object Modeling with OMG UML Tutorial Series ©
1999-2001 OMG and Contributors: Crossmeta, EDS, IBM,
Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies,
Klasse Objecten, Rational Software, Telelogic, Unisys

=MACIASZEK, L.A. (2001): Requirements Analysis and
System Design. Developing Information Systems with UML,
Addison Wesley Copyright © 2000 by Addison Wesley

=“Analysis and Design with UML,” Rational Copyright © 1997
by Rational Software Corporation

=“Practical UML: A hands-on introduction for developers,”
Copyright © 2002 TogetherSoft, Inc.

UNIVERSITY.-OF MASSACHUSETTS AMRERST+:- DEF

CONPUTER UML Goals

=Define an easy-to-learn but semantically rich
visual modeling language

=Unify the Booch, OMT, and Objectory modeling
languages

=Include ideas from other modeling languages

=Incorporate industry best practices

=Address contemporary software development
issues

sscale, distribution, concurrency, executability, etc.
=Provide flexibility for applying different processes

=Enable model interchange and define repository
interfaces

UNIVERSITY, OF MASSACHUSETTS AMHERST ;D EpPAR]

©Rick Adrion 2003 (except where noted)

CONPUTER UML Overview

*The UML is a graphical language for
sspecifying
svisualizing
=constructing
=documenting
sthe artifacts of software systems

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

COMPUTER Why is UML important?

=Analogy
=Architects design buildings
=Builders use the designs to create buildings
=Blueprints are the standard graphical language
that both architects and builders must learn as
part of their trade
*UML has emerged as the software blueprint
language for analysts, designers, and
programmers alike
=provides a common vocabulary to talk about
object-oriented software design.

Copyright © 2002 TogetherSoft, Inc

UNIVERSITY. OF MASSACHUSETTS AMHERST - DEPART

CMPSCI520/620

CONFUTE 0-0 problem solving

=underlying tenet begins with the construction of a
model

=a model is an abstraction of the underlying problem

=the domain is the actual world from which the problem
comes

=Models consist of objects that interact by sending
each other messages

=have things they know (attributes) and things they can
do (behaviors or operations)

=values of an object's attributes determine its state
=Classes are the "blueprints" for objects
=a class wraps attributes (data) and behaviors
(methods or functions) into a single distinct entity

=objects are instances of classes.
Copyright © 2002 TogetherSoft, Inc

UNIVERSITY:OF MASSACHUSETTS AMRERST4-DE

COMPUTER Foundation Concepts

= Building blocks - the basic building blocks of UML are:
=model elements (classes, interfaces, components, use cases, etc.)
=relationships (associations, generalization, dependencies, etc.)
=diagrams (class diagrams, use case diagrams, interaction diagrams,
etc.)
= Well-formedness rules
= Well-formed: indicates that a model or model fragment adheres to all
semantic and syntactic rules that apply to it.
= UML specifies rules for:
=naming
=scoping
= visibility
= integrity
= execution (limited)
=However, during iterative, incremental development it is expected
that models will be incomplete and inconsistent.

UNIVERSITY, OF MASSACHUSETTS- AMHERST 3 DE

©Rick Adrion 2003 (except where noted)

COMPUTER Unifying Concepts in UML

sclassifier-instance dichotomy

=e.g., an object is an instance of a class OR
a class is the classifier of an object

sspecification-realization dichotomy

=e.g., an interface is a specification of a class
OR a class is a realization of an interface

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

COMPITER What is use case modeling?

=use case model

=a view of a system that emphasizes the behavior as it
appears to outside users. A use case model partitions
system functionality into transactions (‘use cases’) that
are meaningful to users (‘actors’).

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘P‘&

10

CMPSCI520/620

CONPUTER Use-Case diagrams

=emphasis is on what a system does rather than
how
=Use case diagrams are closely connected to
scenarios
=a scenario is an example of what happens when
someone interacts with the system, e.g.,
"A patient calls the clinic to make an appointment for
a yearly checkup. The receptionist finds the nearest
empty time slot in the appointment book and
schedules the appointment for that time slot."
=3 use case is a summary of scenarios for a single
task or goal
=an actor is who or what initiates the events
involved in that task

UNIVERSITY. OF MASSACHUSETTS AMRERST+:- DE|

FHbie Example

=Make Appointment
=use case for the medical clinic
=actor is a Patient
=connection between actor and use case is a
communication association (or communication for
short)
[- communication

actor —>» % make appointment

Patient t use case

UNIVERSITY; OF MASSACHUSETTS-AMHERST -

©Rick Adrion 2003 (except where noted)

COMPUTER ,

SCIENeE Use Case Modeling: Core Elements
Construct |Description Syntax
use case A sequence of actions, including

variants, that a system (or other eaCacont
entity) can perform, interacting with |\ """
actors of the system.
actor A coherent set of roles that users
of use cases play when interacting
with these use cases.
system Represents the boundary between
boundary |the physical system and the actors
who interact with the physical
system.

UNIVERSITY: OF MASSACHUSETTS AMRERST:+ 4D

COMPUTER

SCIENeE Use Case Modeling: Core Relationships

Construct

Description

Syntax

association

The participation of an actor in a use
case. i.e., instance of an actor and
instances of a use case communicate
with each other.

generalization

A taxonomic relationship between a
more general use case and a more
specific use case.

extend

A relationship from an extension use
case to a base use case, specifying
how the behavior for the extension
use case can be inserted into the
behavior defined for the base use
case.

<<extend>>
>

UNIVERSITY. OF MASSACHUSETTS-AMHERST

11

CMPSCI520/620

COMPUTER

seienee An example

=The ESU University wants to computerize their registration
system
=The Registrar sets up the curriculum for a semester
=One course may have multiple course offerings
=Students select 4 primary courses and 2 alternate courses

=Once a student registers for a semester, the billing system is
notified so the student may be billed for the semester

=Students may use the system to add/drop courses for a period
of time after registration

=Professors use the system to receive their course offering
rosters

=Users of the registration system are assigned passwords
which are used at logon validation

Copyright © 1997 by Rational Software Corporation

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER.-}“

COMPUTER

seience Use Cases

=A use case is a pattern of behavior the system exhibits

=Each use case is a sequence of related transactions
performed by an actor and the system in a dialogue

=Actors are examined to determine their needs
=Registrar -- maintain the curriculum
=Professor -- request roster
=Student -- maintain schedule

=Billing System -- receive billing information from
registration

o O OO

Maintain Curriculum Request Course Roster Maintain Schedule

Copyright © 1997 by Rational Software Corporation

UNIVERSITY; OF MASSACHUSETTS-AMHERST - %

©Rick Adrion 2003 (except where noted)

COMPUTER Actors

=An actor is someone or some thing that must interact
with the system under development

Registrar § %

Professor

Student

Billing System

Copyright © 1997 by Rational Software Corporation

UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I-‘(

COMPUTER Documenting Use Cases

=A flow of events document is created for each use
cases

=\Written from an actor point of view
=Details what the system must provide to the actor when
the use cases is executed
=Typical contents
="How the use case starts and ends
=Normal flow of events
=Alternate flow of events
=Exceptional flow of events

Copyright © 1997 by Rational Software Corporation

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE&_E

12

CMPSCI520/620

COMPUTER Use Case Diagram

=Use case diagrams are created to visualize the
relationships between actors and use cases

— X

Request Course Roster
Student Professor
% ﬁaintain Schedule
— D

Maintain Curriculum
Registrar
Billing System

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER}“

CONPUTER Documenting use cases

= Brief Description

= Actors involved

=Preconditions necessary for the use case to start

=Detailed Description of flow of events that includes:
=Main Flow of events, that can be broken down to show:

=Subflows of events (subflows can be further divided into smaller
subflows to improve document readability)

= Alternative Flows to define exceptional situations

=Postconditions that define the state of the system after the
use case ends

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DEE:I‘\"

©Rick Adrion 2003 (except where noted)

c“ﬂ;‘;{'ﬂﬁ% Maintain Curriculum Flow of Events

= This use case begins when the Registrar logs onto the
Registration System and enters his/her password. The
system verifies that the password is valid (E-1) and prompts
the Registrar to select the current semester or a future
semester (E-2). The Registrar enters the desired semester.
The system prompts the Registrar to select the desired
activity: ADD, DELETE, REVIEW, or QUIT.

= |f the activity selected is ADD, the S-1: Add a Course
subflow is performed.

= |f the activity selected is DELETE, the S-2: Delete a Course
subflow is performed.

= |f the activity selected is REVIEW, the S-3: Review
Curriculum subflow is performed.

= [f the activity selected is QUIT, the use case ends.

Copyright © 1997 by Rational Software Corporation

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

COMPUTER : LEr :
<eieice Narrative use case specification
Use Case Add a course to the curriculum
Brief Description This use case allows a Registrar to enter a new course.
Actors Registrar
Preconditions Registrar has a valid password (E-1), has selected a

semester default or E-2), and has selected the Add (S-
1) function at the system prompt

Main Flow The system enters the Add a Course subflow

Alternative Flows The Registrar activates the Delete, Review, or
Quit functions

Postconditions If the use case was successful, the Registrar has
accessed the Add a Course function

UNIVERSITY. OF MASSACHUSETTS-AMHERST .+ DE il

13

CMPSCI520/620

COMPUTER Uses and Extends Relationships

=As the use cases are documented, other use case
relationships may be discovered
=A uses relationship shows behavior that is common to
one or more use cases

=An extends relationship shows optional behavior

O <<uses>>
Register for courses

<<uses>>

-,

Logon validation

-,

Maintain curriculum
Copyright © 1997 by Rational Software Corporation

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE;R‘?-“

COMPUTER
SCIENCE

University Enrolment - Maciaszek

CONPUTER University Enrolment (cont)

= The system is required to
= Assist in pre-enrolment activities
= Handle the enrolment procedures
= Pre-enrolment activities
= Mail-outs of
= | ast semester's examination grades to students
= Enrolment instructions

= During enrolment
= Accept students' proposed programs of study
= Validate for prerequisites, timetable clashes, class sizes,
special approvals, etc.
= Resolutions to some of the problems may require
consultation with academic advisers or academics in charge
of course offerings

UNIVERSITY; OF MASSACHUSETTS-AMHERST - &

©Rick Adrion 2003 (except where noted)

= The university offers
=Undergraduate and postgraduate degrees
=To full-time and part-time students
= The university structure
=Divisions containing departments
=Single division administers each degree
=Degree may include courses from other divisions
= University enrolment system
= Individually tailored programs of study
= Prerequisite courses
= Compulsory courses
=Restrictions
= Timetable clashes
= Maximum class sizes, etc.

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

COMPUTER
SCIENCE

Example 4.12

Student

=During enrolment
=Accept students’

=Validate

Pre-enrolment activities
=Mail-outs of

=Last semester's examination grades to
students
=Enrolment instructions

Provide Examination Results

F<extend>>

Student Office

Provide Enrolment Instructions

<<include>>

Enter Program of Study alidate Program of Study

Data Entry
Person

Registrar Office

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'

14

CMPSCI520/620

CONPUTER When to model use cases

=Model user requirements with use cases.
=Model test scenarios with use cases.
=|f you are using a use-case driven method

sstart with use cases and derive your structural and
behavioral models from it.

=|f you are not using a use-case driven method

=make sure that your use cases are consistent with your
structural and behavioral models.

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE

COMPUTER Use Case Realizations

=The use case diagram presents an outside view of the
system
=|nteraction diagrams describe how use cases are
realized as interactions among societies of objects
=Two types of interaction diagrams
=Sequence diagrams
=Collaboration diagrams

Copyright © 1997 by Rational Software Corporation

UNIVERSITY; OF MASSACHUSETTS-AMHERST =

©Rick Adrion 2003 (except where noted)

COMPUTER Use Case Modeling Tips

= Make sure that each use case describes a significant chunk of
system usage that is understandable by both domain experts and
programmers

= When defining use cases in text, use nouns and verbs accurately
and consistently to help derive objects and messages for interaction
diagrams (see Lecture 2)

= Factor out common usages that are required by multiple use cases

= |f the usage is required use <<include>>

= |f the base use case is complete and the usage may be optional,
consider use <<extend>>

= A use case diagram should
= contain only use cases at the same level of abstraction
=include only actors who are required
= Large numbers of use cases should be organized into packages

UNIVERSITY. OF MASSACHUSETTS-AMHERST: 4D

CONPUTER sequence diagram

=an interaction diagram that details how operations are carried
out
=what messages are sent and when
=are organized according to time
=time progresses as you go down the page
=objects involved in the operation are listed from left to right
according to when they take part in the message sequence.

Symbol Meaning

3 simple message which may be synchronous or
asynchronous

- - simple message return (optional)

—_— a synchronous message

— an asynchronous message

UNIVERSITY. OF MASSACHUSETTS-AMHERST

15

CMPSCI520/620

CONPUTER Sequence Diagram

X

arranged in a time sequence

=A sequence diagram displays object interactions

: Student registration
I form

1:fill in info

2: submit

3| add course(mary, math 01)

4: are you open?

\;‘J gistration math 101 math 101
manager section 1

UNIVERSITY:OF MASSACHUSETTS AMRERST: '

6: add (mary.

5: are you opeg?
7: add (mary

COMPUTER

=also interaction diagrams

messages are sent

seience Collaboration Diagrams

=focus on object roles instead of the times that

course form
1: sat course info ‘CourseForm|-
: Registrar \J/ 3: add course
aCourse theManager :
Course CurriculumManager
I <

4: new course

UNIVERSITY; OF MASSACHUSETTS-AMHERST:

©Rick Adrion 2003 (except where noted)

COMPUTER

seienee Example 4.17 — Maciaszek

X

Data ﬁnlry
Petson

L

[aCoursenftering

Program aStudent aCourse
EntryWVindow Student Course

addistd crs sem) | |

\

areYouWalid{out s_check’ }
[s_check="no"]destroy ‘

\

|

|
areYoquen(uLll c_check)

[cicheck:”nn"]destmy:

|
addCourse(crsOIDY | ‘
\
addStudentq.;tdOID) ‘

UNIVERSITY. OF MASSACHUSETTS- AMHERST 1L

CourgeOffering

1
Enter Program of Study
use case

areYouDpen{out c_check)

E—

|
|
|
addStudent(stdoin) |

16

