
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

08- Notation-Formal

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Engineering and Computer Job Fair
ßCampus Center on October 1 from 10 am - 3 pm
ßMicrosoft, Mitre, GE, FAA and BAE
ßseeking Computer Science students for permanent,
summer and co-op positions

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

p1 t1 p2

Petri Nets

ßPetri nets are “marked” graphs
ßtwo node types: places & transitions
ßtokens mark the nodes
ßtransitions are enabled (“fire”) if all connected
places contain tokens

ßOptions: simultaneous or asynchronous

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets: Informal Definition

ßDesigned specifically for modeling systems with
interacting concurrent components.

ßConsists of a set of places and a set of transitions
ßEdges connect places and transitions.

ßOnly transition Æ place and place Æ transition links are
allowed.

ßEach place can have a finite number of tokens.

ßA transition is enabled if each of its input places has at
least one token.
ßAn enabled transition can fire: one token is taken from
each input place and one token is put into each output
place.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

p3

p1

t 1

p4

p2
t 3

t 2

enabled

enabled

Petri Net example

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

p1

t 1

p4

p2
t 3

t 2

p3

enabled

enabled

Petri Net example

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets: Formal Definition

ßA Petri Net is a four-tuple, C=(P,T,I,O)
ßP = {p1, p2, ..., pn}, n ≥ 0 is a finite set of

places.
ßT = {t1, t2, ..., tm}, m ≥ 0 is a finite set of

transitions.
ß I: T Æ P is the input function.
ßO: T Æ P is the output function.

ßpi is an input place of a transition tj if pi Œ I(tj)
ßpi is an output place of a transition tj if pi Œ

O(tj)
ßPetri Net markings
ßA marking m is a mapping P Æ N where N =
0, 1, 2,
ßThe marking m can be represented as a n-
vector m = (m1, m2, ...mn), n = |P |, mi Œ N,
1 ≤ i ≤ n
ßA marked Petri net M = (C, m) is a Petri net
C and a marking m .

p1

t 1

p4

p2

t 3

t 2

marking (0,0,2,1)

p3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Net for Heating Controller

start_heating

desired_temperature_reached

desired_temperature_not_reached

end_time_reached

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More on Petri nets

ß if there exists a marking which is reachable from the initial
marking where no transitions are enabled, such a transition is
called a "deadlock"
ßa PN with no possible deadlock is said to be live, called the

"liveness property”
ß in simplest PN, tokens are uninterpreted
ßin general, a selection policy can not be specified
ßhave no "policy" for resolving conflicts, potential "starvation”

ßmany extensions:
ßHierarchical Petri Nets
ßColored tokens
ß“Or" transitions
ßQueues at places

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets vs. FSA

ß For any finite state machine, a Petri net can be built that models the
finite state machine
ß Petri nets are as powerful as finite state machines

ß Petri nets advantages:
ß net composition (in different forms) can be found easier than

the cross-product of finite state machines
ß parallelism and nondeterminism are represented in a more

understandable way
ß FSA advantage:
ß simpler graph structure for some applications (e.g. parsers)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How to write it down?

ßnatural language

ßstructured natural language

ßpictorial notation
ßCharts, Diagrams, Box-and-Arrow Charts
ßGraphs
ßFlowgraphs

ßParse Trees

ßCall graphs

ßDataflow graphs

ß formal language(s)
ßstate-oriented

ßfunction-oriented

ßobject-oriented

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Overview of Formal Methods

ßFormal methods
ßmathematically-based languages, techniques and tools
for specifying and verifying software and systems

ßspecification ¤ verification

ßbasic strategy

observed

Behavior

inferred

Comparison

model/
product

Intent

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Basic Verification Strategy

ßanalyze a system for desired properties, i.e., compare
behavior to intent
ßintent
ßcan be expressed as properties of a model (model-based
specification)

ßcan be expressed as formulas in mathematical logic
(property-based specification)

ßbehavior
ßcan be observed as software executes
ßcan be inferred from a model

ßcan be expressed as formulas in mathematical logic

ßdifferent representations support different sorts of
inferences

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

finite-state verification

ßmodel checking
ßlogic spec + FSA comp model fi symbolic
model checking
ßFSA spec + FSA comp model fi automata-
theoretic model checking

ßproperty checking
ßadvantages/disadvantages
ßreason about a finite model of the system
ßfast, yields counterexamples, manages partial
specifications, applies to concurrency
ßstate explosion!

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

(automated) mathematical reasoning

ßtheorem proving

ßproof checking

ßadvantages/disadvantages
ßdifficult, error prone

ßdecidability vs. expressiveness
ßpropositional calculus is decidable

ßpredicate calculus is semi-decidable

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Specifications

ßdefine intent and provide a basis for formal reasoning
ßshould be based on a sound mathematical theory

ßcriteria to evaluate specification methods (languages)
ßmathematical foundation

ßconstructability (ease of use)

ßcomprehensibility

ßminimality

ßgeneral applicability

ßextensibility

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is a specification language?

ßA formal specification language is a triple
<Syn, Sem, Sat >, where Syn and Sem are sets

Syn X Sem … Sat is a relation.

ßGiven a specification language, <Syn, Sem, Sat>
ßif Sat (syn, sem) then syn is a specification of sem
and sem is a specificand of syn

ßthe specificand set of a specification syn Œ Syn is the
set of all specificands sem Œ Sem, such that

 Sat (syn,sem)

from Wing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Properties

ßa specification syn Œ Syn is unambiguous if and only if Sat
maps syn to exactly one specificand set.

ßa specification syn Œ Syn is consistent (or satisifable) if
and only if Sat maps syn to a non-empty specificand set.

ßGiven <Syn, Sem, Sat >, an implementation prog Œ Sem is
correct with respect to a given specification spec Œ Syn if
and only if Sat (spec, prog)

ß informally, a specifier who “overspecifies” is guilty of
“implementation bias”
ßa specification has implementation bias if it specifies
unobservable properties of its specificands,

ße.g., a set specification that keeps track of the insertion order
favors an ordered-list implementation over a hash table
implementation

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Classification

ßModel-oriented (operational) specification
ßbehavior described in terms of another data
abstraction or mathematical model with known
properties, e.g., tuples, relations, functions, sets,
and sequences

ßProperty-oriented (descriptive) specification
ßbehavior is described in terms of properties,
usually stated as axioms, that the system must
specify

ßor the objects and operations to define themselves
implicity

ßFormal vs “semi-formal” vs informal

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Alternative classification

ßAxiomatic specification

ßAbstract models

ßSet Theory

ßPredicate Logic

ßProgramming Languages

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model-oriented examples

ßFormal:
ßAbstract-data-type specification languages: Parnas’
state machines, VDM, Z
ßConcurrent and distributed systems specification
languages: Trace Specifications, Petri nets, CCS, CSP

ßSemi-Formal
ßDiagrams
ßBehavior: FSA, Petri-Nets, StateCharts

ßCommunications: DF, activity diagrams, sequence diagrams

ßFunctions: Use-Case diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Semi-Formal Technques

ßCommunication: DFD
ßlack precise semantics

ßabstract “machine” for interpreting the operational
semantics of a DFD specification is not fully defined

ßcan’t simulate behavior

ßBehavior: FSA
ßlimited memory

ßcombinatorial explosion

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

abstract data type example

 type stack is

 create: fi stack

 pop: stack fi stack

 push: stack X integer fi stack

 top: stack fi integer

Note: Because some of the specification methods are
easier to apply to functions, all operations are
functions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Input/Output Specification
ßtype definition:

 type S is record

 top: integer

 data: array [1 ...] of integers

 end record

ßoperational specification:

 {true} push (S0, I) fi S

 {" J, 1 < J ≤ S0.top

 S0.data [J] = S.data [J] Ÿ

 S.top = S0.top + 1 Ÿ

 S.Data [S.top] = I }

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

 Ordered Sets

ßordered set definition:

 X = {x0,x1, ... ,xn}

 |X| = n +1

 extract(X) = {x0,x1, ... ,xn-1}

ßoperational definitions:

 create = { 0 }

 push (S0, I) = S L

 S0 = extract(S) Ÿ

 |S| = |S0| + 1 Ÿ

 x|S| = I

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Z (“zed”)

ßproposed by Abrail, 1980

ßdeveloped by Hayes and Spivey

ßbased on typed set theory and first order logic

ßprovides a schema to describe a specifications state
and operations

ßdescribe systems as collections of SCHEMAS
ßinputs and outputs to functions

ßInvariants: statements whose truth is preserved by the
functions

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Z

ßa schema groups variable declarations with a list of
predicates that constrain the possible values for a
variable

schema name

schema signature

schema predicate

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

BirthdayBook
known : P NAME
birthday: NAME 9 DATE

known = dom birthday

set

function
invariant

The “Birthday Book” Example

ßMaintain a repository of information about birthdays
ßConsists of (name, birthday) pairs
ßWant to add pairs for people whose birthdays are to be
remembered
ßWant to know whose birthday falls on a given date
ßDon’t care about how this is implemented
ßSchema describes the state space of the system: the
space of all states that the system can be in

elements

Possible state of system

known = {John, Mike, Susan}
birthday = {John 9 25-Mar,
 Mike 9 20-Dec,
 Susan 9 20-Dec}

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Another Schema

AddBirthday
DBirthdayBook
name?: NAME
date?: DATE

name? œknown
birthday’ = birthday » {name?9 date?}

state change

next

invariants

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Another Schema

FindBirthday
XBirthdayBook
name?: NAME
date!: DATE

name? Œknown
date! = birthday (name?)

no state change

apply fn

invariants

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Z Summary

ßSchemas can be grouped and composed

ßMore notation: aimed at facilitating terse, precise
communication

ßEmphasis on what a system is supposed to do

ßIndication of how it looks externally

ß(Like Abstract Data Type specifications) basis for going
on to think about HOW to implement

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

 State machine model

ß2 types of operations
ß V-Operations (value returning)
ß Do not cause a change in state

ß O-Operations
ß Cause a change in state

ß specs must show the effect of each operation on the V-
operations

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example

ßV-operation: TOP

 possible values: integers; initially undefined

 parameters: none

 effect:

 error call if ‘DEPTH’ = 0
ßO-operation: PUSH(a)

 possible values: none

 parameters: integer a

 effect:

 error call if ‘DEPTH’ = MAX

 else (TOP =a; ‘DEPTH’ = ‘DEPTH’+1)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Hidden Operations

ßmust deal with side effects and delayed effects, such as
the effect of PUSH on TOP

ßV-operation: DEPTH

possible values: integer; initial value 0
parameters: none
effect: none
ßParnas had informal language, later hidden operations
were used to support the provided O & V operations. In
both cases, need to show that 0≤ Depth (S) ≤ MAX

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 18

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Concurrent & distributed systems

ßFSA

ßPetri nets

ßTrace specifications
ßa trace is a sequence of procedure or function calls and
return values from those calls
ßproposed by David Parnas, 1977

ßformalized by McLean, 1984

ßfurther developed by Dan Hoffman, Rick Snodgrass, etc

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Trace specifications

 NAME
 label

 SYNTAX
 name: __type ... __type fi return_value_type

 SEMANTICS
assertions of the form:
 L(T) -- asserts that T is a legal trace
 V(T) = value -- is the value returned if T

 ends in a function call

ßoperator precedence
≡ < “ = ≥ >
 ÿ
& ~ |
fi ¤

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 19

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Trace specifications

T1 ≡ T2 fi

("T) ((L(T1⋅T) fi L(T2⋅T)) &

 (T is not empty fi (

 (T1⋅T has a value ¤ T2⋅T has a value) &

 (T1⋅T has a value fiV(T1⋅T)= V(T2⋅T))))

note ("S,T) (L(S⋅T) fi L(S))

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example
NAME

stack

SYNTAX
push: integer;
pop: ;
top: fi integer;

SEMANTICS

/*1*/ ("T,i) (L(T) fi L(T⋅push(i))

/*2*/ ("T) (L(T⋅top) ¤ L(T⋅pop)

/*3*/ ("T,i) (T ≡T⋅push(i)⋅pop)

/*4*/ ("T) (L(T⋅top) fi T ≡ T⋅top)

/*5*/ ("T,i) (L(T) fiV(T⋅push(i)⋅top)=i)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 20

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interpretation

/*1*/ ("T,i) (L(T) fi L(T⋅push(i))

/*1*/ unbounded stack

/*2*/ ("T) (L(T⋅top) ¤ L(T⋅pop)

/*2*/ top cause no error iff pop causes no
error

/*3*/ ("T,i) (T ≡T⋅push(i)⋅pop)

/*3*/ push followed by pop does not affect
the future behavior

/*4*/ ("T) (L(T⋅top) fi T ≡ T⋅top)

/*4*/ top does not affect the behavior

/*5*/ ("T,i) (L(T) fiV(T⋅push(i)⋅top)=i)

/*5*/ how to compute the value of top

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example - using /*3*/ and /*5*/

note: push(i)⋅push(j)⋅push(k)⋅pop⋅pop⋅top fi top= i

By /*3*/ ("T,i) (T ≡T⋅push(i)⋅pop)

By /*5*/ ("T,i) (L(T) fiV(T⋅push(i)⋅top)=i)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 21

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Heuristics

ßdefine normal forms

ßstructure semantics

ßuse predicates

ßdevelop specs incrementally

ßuse macros

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comparison

ß trace specifications
ßbased on call sequence

ßno “hidden functions”

ßnatural application to inter-
process communication

ßuniversal & existential
quantifiers

ßalgebraic specifications
ßbased on “type of interest,”
therefore maybe in terms of
objects not visible to user

ßrequires “hidden functions”

ßcannot handle concurrency

ßno existential quantification

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 22

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Property-oriented techniques

ßAbstract-data-type specification languages
ßAxiomatic: Hoare, OBJ, Anna, Larch, and
algebraic, e.g., Clear, ActOne, Aspeque

ßConcurrent and distributed systems
specification languages: temporal logic,
Lamport, LOTOS

ßSemi-formal
ßER diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Logic Specifications

ßExpressed using formulas under a first order
logic theory (usually with quantification), e.g.,
ß$ j [1 ≤ j ≤ s.top| t.data[j]=s.data[j]]
ßTypically expressed as pre- and post-conditions,
e.g.,
ßLet P be a sequential program

ßwith inputs (i0,i1, ... ,in) and outputs (o0,o1, ... ,om)

ßPre (i0,i1, ... ,in) P Post(o0,o1, ... ,om,i0,i1, ... ,in) is a
property

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 23

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

“Hoare” example

type stack =

 record top: integer

 data:array [1 ... 100] of integer

 end

t:= push(s, i)

true{t:= push(s, i)} $ j [1≤ j≤s.top| t.data[j]=s.data[j]

 Ÿ t.data[t.top] = i

 Ÿ t.top =s.top +1]
precondition

post condition
“program”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

“Hoare” example

Logic specification:

true {t:= push(s, i)} $ j [1 ≤ j ≤ s.top|
t.data[j]=s.data[j]

 Ÿ t.data[t.top] = I Ÿ t.top =s.top +1]

Operational specification

{true} push (S0, I) {" J, 1 < J ≤ S0.top

 S0.data [J] = S.data [J] Ÿ
 S.top = S0.top + 1 Ÿ
 S.Data [S.top] = I }

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 24

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Algebraic Specification

Stack (S) Ÿ Integer (I) …

 (1) Top (Push (S, I)) = I

 (2) Top (Create) = Integer Error

 (3) Pop (Push (S, I)) = S

 (4) Pop (Create) = Stack Error

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Larch

ßThe Larch Family of Specification Languages
ßJohn Guttag, James Horning, Jeannette Wing IEEE
Software, 1985

ßLarch Shared Language
ßCommon language for formally representing models

ßLarch Interface Language
ßInterface between the shared language and the target
programming language
ß Larch/Pascal

ß Larch/CLU

ßSpecific implementation language

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 25

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

PROGRAM UNIT
(MODULE, TYPE, FUNCTION,PROCEDURE)

INTERFACE
SPECIFICATION

ROOT
TRAIT

TRAITTRAIT TRAIT

TRAIT

. . .

.

Programming
Language

(Pascal, Clu, ...)

Larch
Interface Language

(Larch/Pascal, Larch/Clu, ...)

Larch
Shared Language

Larch

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Terminology

 SPECIFICATION PROGRAMMING
 TERM LANGUAGE TERM

Operator Function

Sort Type

Term Expression

Trait Module (ADT), Function,
 Procedure type

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 26

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Goals of Larch

ßComposability
ßCommon specifications from existing specifications

ßLibrary or handbook

ßReadability

ßLocalize programming language dependence
ßGeneral model is very complex so use different
language specific models

ßAutomated Support
ßConstruction tool

ßSyntactic checking

ßSemantic checking

ßSupport incompleteness

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Trait

Introduces
 signature of the operation
 (sort checking)

Constrains
 constrains the operations &
 relations among the operators

theory - set of theorems that can be proved about the
operator done by substitution, using rules of first order
predicate calculus with equality

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 27

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Examples

Container: trait

 introduces

 new: Æ C

 insert: C, E Æ E
 constrains C so that

 C generated by [new, insert]

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Examples

IsEmpty: trait
 assumes Container
 introduces
 isEmpty: C Æ Bool
 constrains isEmpty, new, insert
 so that for all [c :C, e :E]
 isEmpty(new) = true
 isEmpty(insert(c,e)) = false
 implies converts [isEmpty]

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 28

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Constructing traits

Container

isEmpty

Next

Cardinal

Size

Total
Order

Mulitset

Priority Queue

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interface Languages

ß“bridge” between shared language and implementation
language

ß“Two-tiered” specification approach: principal innovation
of Larch w/r/t algebraic specification languages

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 29

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interface Languages

ßLarch/L incorporates “flavor” of L
ß semantics, keywords

ß makes it easier for those who know L to write provable
specs

ß just need to adapt existing shared traits from Library (in
theory...)

ßLarch/L languages designed to support data abstraction,
even if language L doesn’t directly support it (Pascal, C,
C++)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Larch/Pascal specification

type Bag exports bagInit, bagAdd, bagRemove, bagChoose
based on sort Mset from MultiSet with [integer for E]
procedure bagInit(var b:Bag)

modifies at most [b]
ensures bpost = { }

procedure bagAdd(var b:Bag; e; integer)
requires numElements(insert(b,e)) ≤ 100
modifies at most [b]
ensures bpost = insert(b,e)

procedure bagRemove(var b:Bag; e; integer)
modifies at most [b]
ensures bpost = delete(b,e)

procedure bagChoose(var b:Bag; e; integer): boolean
modifies at most [b]
ensures if ~ isEmpty (b)

 then bagChoose & count (b, epost)>0
 else ~ bagChoose & modifies nothing
End Bag

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 30

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Pascal implementation of BagAdd
prodedure bagAdd(var B:Bag;e:integer);

var i, lastEmpty: 1...MaxBagSize
begin

i:= 1;
while ((i < MaxBagSize) and (b.elems[i]<>e)) do

begin
if b.counts[i] = 0 then LastEmpty:=i;
i:= i+1;

end;
if b.elems[i] = e

then b.counts[i]:= b.counts[i]+1;
else begin

if b.counts[i]=0 then LastEmpty:=i;
b.elems[LastEmpty]:=e;
b.counts[LastEmpty]:=1;

end;
end[bagAdd];

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Conclusions

ß Interesting attempt to address:
ßreadability/writability of formal specs
ßlarge, multi-lingual environment issues

ßRelationship between shared and interface languages
complex and unclear
ßRelationship between interface and implementation

languages not as strong as one would like
ß “Software tool support needed” (syntax-directed editors,

browsers, theorem-provers, etc.)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 31

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Current Status

ßStrong theoretical foundation

ßSome practical use, especially in Europe

ßCurrent Languages trying to be more practical

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How effective are these methods?

ßWing's study of the Library Problem
ßa small library database
ßtransactions

checkout/return book
add/remove book
get a list of books
ß author
ß subject
ß borrower

get date/borrower for book

ßusers
ßstaff
ßborrowers

ßrestrictions
ßavailability
ßno book available & checked out
ß# books borrowed ≤max

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 32

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Analysis

ßSpecification approaches
ß informal
ßAI
ß logic
ßexecutable/non-executable

ßComparisons
ß formality
ß life-cycle phase
ßoperational vs. behavioral
ßmodularity
ßreadability
ßcompleteness

ßNot considered
ßconcurrency
ßreliability
ß fault-tolerance
ßsecurity

ß initialization
ßwhat's the initial state of the
library?

ßmissing operations
ßneed more transactions?

ßerror handling
ßwhat to do with errors?
ßcheckout, return, add, remove,
"type errors"

ßmissing constraints
ßmore than one copy in library,
checked out

ßstate
ßwhat to record, change?

ß “non-functional” specification
ßhuman factors, liveness, time

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Conclusions

ßmethods do not differ radically
ß style
ßmost use pre- and post-conditions for specifying behavior
ßalgebraic & set-theoretic most common for specifying data
(operational)
ßmodel-oriented (operational) most common approach

ß formal specs can
ßidentify diff in informal specs
ßhandle simple, small problems
ßspecify sequential functional behavior

ßChallenges
ßscaling
ßnon-functional behavior
ßcombining techniques
ßtools
ßintegrating specification into the lifecycle

