CMPSCI520/620

LQBMPUTEB
)SCIENGE

08- Notation-Formal

Rick Adrion

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

L“E‘.';'i';’,}&'{ Engineering and Computer Job Fair

=Campus Center on October 1 from 10 am - 3 pm
= Microsoft, Mitre, GE, FAA and BAE

=seeking Computer Science students for permanent,
summer and co-op positions

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

Logq;g,}&'g Petri Nets

=Petri nets are “marked” graphs
»two node types: places & transitions
stokens mark the nodes

stransitions are enabled (“fire”) if all connected
places contain tokens

p1 1 p2

=Options: simultaneous or asynchronous

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

L“{‘};‘i‘;’,}&'{ Petri Nets: Informal Definition

=Designed specifically for modeling systems with
interacting concurrent components.

= Consists of a set of places and a set of transitions
sEdges connect places and transitions.

=Only transition — place and place — transition links are
allowed.

=Each place can have a finite number of tokens.

= A transition is enabled if each of its input places has at
least one token.
=An enabled transition can fire: one token is taken from
each input place and one token is put into each output
place.

UNIVERSITY. OF MASSACHUSETTS AMHERST »DiEpA

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

L“{‘,‘,‘;{’,}E‘E Petri Net example

"@

- endbled |

p4

UNIVERSITY. OF MASSACHUSETTS AMHERST -/ DERA

L“{‘,‘,‘;{’,}E‘E Petri Net example

"©

UNIVERSITY OF MASSACHUSETTS:AMHERST

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

L“{‘.‘;’i‘;’,}&'ﬁ Petri Nets: Formal Definition
= A Petri Net is a four-tuple, C=(P,T,1,0) 1 ‘
=P ={py, Py, ---, Pu}, N 2 O is & finite set of
places.
=T={t,, t,, ..., t,}, m 2 0 is a finite set of 1
transitions.

= |: T — Pis the input function.

=O: T — Pis the output function.
* p; is an input place of a transition t if p; I(t)
. % its an output place of a transition ¢ if p;, €

= Petri Net markings
= A marking m is a mapping P - N where N =

0,1,2, ..
=The marklng m can be represented as an- o
vectorm =(m,, m, ..m,),n=|P|, m;eN,
1<isn
= A marked Petri net M = (C, m) is a Petri net 5
C and amarkingm . . P

marking (0,0,2,1)

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

L“{‘.‘,‘i‘;’,}&'{ Petri Net for Heating Controller

desired_temperature_reached

(®
O e
©

end_time_reached

start_heating

desired_temperature_not_reached

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

L’“!‘.'-'i{’,}ﬁ'{ More on Petri nets

=if there exists a marking which is reachable from the initial
marking where no transitions are enabled, such a transition is
called a "deadlock"

=a PN with no possible deadlock is said to be live, called the
"liveness property”

=in simplest PN, tokens are uninterpreted

=in general, a selection policy can not be specified

=have no "policy" for resolving conflicts, potential "starvation”
= many extensions:

=Hierarchical Petri Nets

=Colored tokens

=“Or" transitions

=Queues at places

UNIVERSITY. OF MASSACHUSETTS ANMHERST: #/ DEE

L"ﬂ-’;‘;’ﬂﬁ'ﬁ Petri Nets vs. FSA

= For any finite state machine, a Petri net can be built that models the
finite state machine

= Petri nets are as powerful as finite state machines
= Petri nets advantages:

= net composition (in different forms) can be found easier than
the cross-product of finite state machines

= parallelism and nondeterminism are represented in a more
understandable way

= FSA advantage:
= simpler graph structure for some applications (e.g. parsers)

UNIVERSITY OF MASSACHUSETTS:AMHERST

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

L“{‘.‘;’i‘;’,}&'{ How to write it down?

= natural language
= structured natural language
= pictorial notation
=Charts, Diagrams, Box-and-Arrow Charts
=Graphs
= Flowgraphs
=Parse Trees
= Call graphs
= Dataflow graphs
= formal language(s)
=state-oriented
=function-oriented
=object-oriented

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

L“{‘},‘;{’,}E‘E Overview of Formal Methods

=Formal methods

smathematically-based languages, techniques and tools
for specifying and verifying software and systems

sspecification [verification
=basic strategy

Comparison

inferred

UNIVERSITY. OF MASSACHUSETTS AMHERST v DEr

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

Lﬂg‘}.‘;{’,}ﬁ'{ Basic Verification Strategy

=analyze a system for desired properties, i.e., compare
behavior to intent
sintent
=can be expressed as properties of a model (model-based
specification)
=can be expressed as formulas in mathematical logic
(property-based specification)
=behavior
=can be observed as software executes
=can be inferred from a model
=can be expressed as formulas in mathematical logic
wdifferent representations support different sorts of
inferences

UNIVERSITY OF MASSACHUSETTS-AMHERST D_E

L’"«":'-'E’JE'E finite-state verification

*model checking

=logic spec + FSA comp model = symbolic
model checking

*FSA spec + FSA comp model = automata-
theoretic model checking

=property checking
»advantages/disadvantages
=reason about a finite model of the system

»fast, yields counterexamples, manages partial
specifications, applies to concurrency

sstate explosion!

UNIVERSITY OF MASSACHUSETTS:AMHERST

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

L“ﬂ;’:‘;’,}&'{ (automated) mathematical reasoning

=theorem proving

=proof checking

»advantages/disadvantages
wdifficult, error prone
=decidability vs. expressiveness

=propositional calculus is decidable
spredicate calculus is semi-decidable

UNIVERSITY OF MASSACHUSETTS-AMHERST DEIh

Lﬂg‘;g}&'{ Specifications

=define intent and provide a basis for formal reasoning
sshould be based on a sound mathematical theory
= criteria to evaluate specification methods (languages)
»*mathematical foundation
=constructability (ease of use)
=comprehensibility
=minimality
=general applicability
=extensibility

UNIVERSITY OF MASSACHUSETTS:AMHERST DEﬁ

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

L’“«";‘-‘i{’,}ﬁ'{ What is a specification language?

= A formal specification language is a triple
<Syn, Sem, Sat >, where Syn and Sem are sets

Syn X Sem D Sat is a relation.
»Given a specification language, <Syn, Sem, Sat>

=if Sat (syn, sem) then syn is a specification of sem
and sem is a specificand of syn

sthe specificand set of a specification syn € Syn is the
set of all specificands sem € Sem, such that

Sat (syn,sem)

from Wing

UNIVERSITY. OF MASSACHUSETTS ANMHERST % DE!

Lﬂ{‘}.‘;{’,}ﬁ'{ Properties

= a specification syn e Syn is unambiguous if and only if Sat
maps syn to exactly one specificand set.

= a specification syn e Syn is consistent (or satisifable) if
and only if Sat maps syn to a non-empty specificand set.
= Given <Syn, Sem, Sat >, an implementation prog € Sem is
correct with respect to a given specification spec € Syn if
and only if Sat (spec, prog)
=informally, a specifier who “overspecifies” is guilty of
‘implementation bias”
=a specification has implementation bias if it specifies
unobservable properties of its specificands,
=e.g., a set specification that keeps track of the insertion order
favors an ordered-list implementation over a hash table
implementation

UNIVERSITY OF MASSACHUSETTS:AMHERST

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

LQBMPUTEB
)SCIENGE

Classification

»Model-oriented (operational) specification

=behavior described in terms of another data
abstraction or mathematical model with known
properties, e.g., tuples, relations, functions, sets,
and sequences
= Property-oriented (descriptive) specification
=behavior is described in terms of properties,
usually stated as axioms, that the system must
specify
»or the objects and operations to define themselves
implicity
*Formal vs “semi-formal” vs informal

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

LQBMPUTEB
)SCIENGE

Alternative classification

= Axiomatic specification

= Abstract models

=Set Theory

»Predicate Logic
*Programming Languages

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

10

CMPSCI520/620

L’“«";‘-‘i{’,}ﬁ'{ Model-oriented examples

=Formal:

»Abstract-data-type specification languages: Parnas’
state machines, VDM, Z

=Concurrent and distributed systems specification
languages: Trace Specifications, Petri nets, CCS, CSP

= Semi-Formal
=Diagrams
»Behavior: FSA, Petri-Nets, StateCharts
= Communications: DF, activity diagrams, sequence diagrams
»Functions: Use-Case diagrams

UNIVERSITY OF MASSACHUSETTS-AMHERST D_E

L’“.!‘,'.';{’,}E'E Semi-Formal Technques

= Communication: DFD
slack precise semantics

mabstract “machine” for interpreting the operational
semantics of a DFD specification is not fully defined

=can’t simulate behavior
=Behavior: FSA

slimited memory

=combinatorial explosion

UNIVERSITY OF MASSACHUSETTS:AMHERST

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

L:Il PU

JEe abstract data type example

type stack is

create: = stack

pop: stack = stack

push: stack X integer = stack
top: stack = integer

Note: Because some of the specification methods are

easier to apply to functions, all operations are
functions

UNIVERSITY OF MASSACHUSETTS-AMHERST 7+ DE

REIENEE Input/Output Specification
stype definition:
type S is record
top: integer
data: array [1 ...] of integers
end record
=operational specification:
{true} push (S,, 1) =S
{VJ,1<J=<S,.top
S,.data [J] = S.data [J] A
S.top = Sytop +1 A
S.Data [S.top] =1}

UNIVERSITY OF MASSACHUSETTS: AMHERST ~+DE

©Rick Adrion 2003 (except where noted)

12

CMPSCI520/620

Lﬂg‘;{’,}&'{ Ordered Sets

=ordered set definition:

X ={Xg:Xq, e X}

[X| =n +1

extract(X) = {Xo,Xq, ... , X4}
soperational definitions:

create ={0}

push (S,, 1) =S A

S, = extract(S) A
ISI= 1Sl + 1A

UNIVERSITY OF MASSACHUSETTS-AMHERST DEIh

W 7 (+70)

=proposed by Abrail, 1980
=developed by Hayes and Spivey
=based on typed set theory and first order logic

=provides a schema to describe a specifications state
and operations

=describe systems as collections of SCHEMAS
sinputs and outputs to functions

sInvariants: statements whose truth is preserved by the
functions

UNIVERSITY OF MASSACHUSETTS:AMHERST DEﬁ

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

ez

=a schema groups variable declarations with a list of
predicates that constrain the possible values for a
variable

schema name

schema signature

schema predicate

UNIVERSITY. OF MASSACHUSETTS AMHERST -/ DERA

Lnycl;g,}glg The “Birthday Book” Example

| Possible state of system 1days
are to be
known = {John, Mike, Susan}
birthday = {John > 25-Mar, date
d Mike = 20-Dec, _
; Susan - 20-Dec} em: the

-BirthdayBook ————
known : P NAME——————————— elemens|

L birthday: NAME 5 DATE

known = dom birthday \@

UNIVERSITY. OF MASSACHUSETTS AMHERST »DiEpA

©Rick Adrion 2003 (except where noted)

14

CMPSCI520/620

L’“{‘.‘!}{’,}E‘E Another Schema

krown' = known U {rame?}.
In fact we can prove this from the specification of AddBirthday, using the invariants

stal krawn’

= dorm birthday' [invariant after|

= dom(birthday U {neme? — date?}) [spec. of AddBirthday)

= dom birthday L dom {neme? — date?} [fact about dom] :I
E = dom birthday | {rame?} [fact about dom]

= known | {neme?}. [invariant before]

UNIVERSITY OF MASSACHUSETTS-AMHERS

L’“{‘.‘!}{’,}E‘E Another Schema

—-FindBirthday
@" EBirthdayBook

name?: NAME

date!: DATE

apply fn!: name? known —

~cdate! = birthday (name?)

UNIVERSITY OF; MASSACHUSETTS:AMHERS

©Rick Adrion 2003 (except where noted)

15

CMPSCI520/620

LQBMPUTEB
)SCIENGE

Z Summary

=Schemas can be grouped and composed

=More notation: aimed at facilitating terse, precise
communication

=»Emphasis on what a system is supposed to do
=Indication of how it looks externally

= (Like Abstract Data Type specifications) basis for going
on to think about HOW to implement

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

LQBMPUTEB
)SCIENGE

State machine model

=2 types of operations
= V-Operations (value returning)
= Do not cause a change in state
= O-Operations
= Cause a change in state

= specs must show the effect of each operation on the V-
operations

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

16

CMPSCI520/620

LQBMPUTEB
)SCIENCE

Example

=\/-operation: TOP
possible values: integers; initially undefined
parameters: none
effect:
error call if ‘DEPTH’ =0
= O-operation: PUSH(a)
possible values: none
parameters: integer a
effect:
error call if ‘DEPTH’ = MAX
else (TOP =a; ‘DEPTH’ = ‘DEPTH’+1)

UNIVERSITY OF MASSACHUSETTS-AMHERST DEF-?

LQBMPUTEB
)SCIENCE

Hidden Operations

=must deal with side effects and delayed effects, such as
the effect of PUSH on TOP

=V-operation: DEPTH
possible values: integer; initial value 0
parameters: none
effect: none

»Parnas had informal language, later hidden operations
were used to support the provided O & V operations. In
both cases, need to show that 0< Depth (S) £ MAX

UNIVERSITY. OF MASSACHUSETTS AMHERST v DEr

©Rick Adrion 2003 (except where noted)

17

CMPSCI520/620

L:IIMPUTEII

*FSA
=Petri nets
= Trace specifications

return values from those calls
=proposed by David Parnas, 1977
=formalized by McLean, 1984

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

Seeienee Concurrent & distributed systems

=a trace is a sequence of procedure or function calls and

=further developed by Dan Hoffman, Rick Snodgrass, etc

L:nmrum ificati
erce 1race specifications

NAME
label
SYNTAX
name: __type ... _ type = return_value_type
SEMANTICS
assertions of the form:
L(T) -- asserts that T is a legal trace

V(T) = value -- is the value returned if T
ends in a function call

=operator precedence

& ~ |
= [

UNIVERSITY. OF MASSACHUSETTS AMHERST v DEr

©Rick Adrion 2003 (except where noted)

18

CMPSCI520/620

L"%".;'i';’.]&'é Trace specifications

T1=T2>
(VT) (L(T1-T) = L(T2:T)) &

(T is not empty = (

(

(T,-T has a value =V(T,-T)= V(T,T))))

note (VS,T) (L(S-T) = L(S))

UNIVERSITY: OF MASSACHUSETTS AHERST DEII%E"*

T, Thasavalue I T,T has avalue) &

1788 Examplo

NAME
stack
SYNTAX
push: integer;
pop: ;
top: = integer;
SEMANTICS

1% (VT.,i) (L(T) = L(T-push(i))
r2q - (YT) (L(Ttop) L(T-pop)
134 (VT,i) (T =T-push(i)-pop)
(
(

4% VT) (L(Ttop) = T=T-top)
[*5*/ VT,i) (L(T) =V(T-push(i)-top)=i)

UNIVERSITY. OF MASSACHUSETTS AMHERST »DiEpA

©Rick Adrion 2003 (except where noted)

19

CMPSCI520/620

LQBMPUTEB
)SCIENCE

Interpretation

1 (VT,i) (L(T) = L(T-push(i))
/*1*/ unbounded stack
[*2*| (VT) (L(T-top)I L(T-pop)
[*2*/ top cause no error iff pop causes no
error
1*3*1 (VT,i) (T =T-push(i)-pop)
[*3*/ push followed by pop does not affect
the future behavior
1*4*| (VT) (L(T-top) = T=T-top)
[*4*/ top does not affect the behavior
1*5* (VT,i) (L(T) =V(T-push(i)-top)=i)
/*5*/ how to compute the value of top

UNIVERSITY. OF MASSACHUSETTS AMHERST: /DERAR

LQBMPUTEB
)SCIENCE

Example - using /*3*/ and /*5*/

note:

By /*3*/ (VT,i) (T =T-push(i)-pop)

By I*5* (VT,i) (L(T) =V(T-push(i)-top)=i)

UNIVERSITY. OF MASSACHUSETTS AMHERST " DeraR

©Rick Adrion 2003 (exce

pt where noted)

20

CMPSCI520/620

L“{‘.‘;‘:{’,}E‘E Heuristics

=define normal forms
sstructure semantics

=use predicates

=develop specs incrementally
=USe macros

UNIVERSITY. OF MASSACHUSETTS - AHERST + DE!

L“{‘.‘;’i{’,}&'{ Comparison
=trace specifications = algebraic specifications
=based on call sequence =based on “type of interest,”

therefore maybe in terms of
objects not visible to user

=requires “hidden functions”
=cannot handle concurrency

=no “hidden functions”

=natural application to inter-
process communication

=universal & existential
quantifiers =no existential quantification

UNIVERSITY: OF MASSACHUSETTS AMHERST = Dt

©Rick Adrion 2003 (except where noted)

21

CMPSCI520/620

L’“!‘,'!;{’,}E'E Property-oriented techniques

»Abstract-data-type specification languages

=Axiomatic: Hoare, OBJ, Anna, Larch, and
algebraic, e.g., Clear, ActOne, Aspeque

=Concurrent and distributed systems
specification languages: temporal logic,
Lamport, LOTOS

=Semi-formal
*ER diagrams

UNIVERSITY OF MASSACHUSETTS-AMHERST

Lﬂ{‘}.‘;{’,}&'{ Logic Specifications

»Expressed using formulas under a first order
logic theory (usually with quantification), €.g.,
3 j[1 <] < s.top| t.data[j]=s.data[j]]

=Typically expressed as pre- and post-conditions,

e.g.,

=|et P be a sequential program

=with inputs (iyi,, ... ,i;) and outputs (04,04, ... ,0,,)
*Pre (iy,i, ... ,i,) P Post(0,,04, ... ,0.,ig:iq, ... i) IS @
property

UNIVERSITY OF MASSACHUSETTS:AMHERST

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

:

ONMTER “Hoare” example

type stack =
record top: integer
data:array [1 ... 100] of integer
end
t:= push(s, i)
true{t:= push(s, i)} 3 j [1=< j<s.top| t.data[j]=s.data[j]
A t.datalt.top] =i

precondition A ttop =s.top +1]
I

‘program”
post condition

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

:

ONPUTER “Hoare” example

Logic specification:
true {t:= push(s, i)} 3 [1 <] < s.top|
t.data[j]=s.datal[j]
A t.dataft.top] = | A t.top =s.top +1]
Operational specification
{true} push (S, 1){V J, 1 <J =S,.top
S,.data [J] = S.data [J] A
S.top = S,top+1 A
S.Data [S.top] = | }

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

23

CMPSCI520/620

L“{‘.‘;‘:{’,}E‘E Algebraic Specification

Stack (S) A Integer (I) ...
(1) Top (Push (S,) =1

(2) Top (Create) = Integer Error

(38) Pop (Push (S, 1)) =S

(4) Pop (Create) = Stack Error

~ o~ A~~~

UNIVERSITY OF MASSACHUSETTS-AMHERST DEIh

U Larch

=»The Larch Family of Specification Languages

=John Guttag, James Horning, Jeannette Wing IEEE
Software, 1985

=L arch Shared Language
=Common language for formally representing models
=L arch Interface Language

sInterface between the shared language and the target
programming language
= Larch/Pascal
= Larch/CLU

= Specific implementation language

UNIVERSITY OF MASSACHUSETTS:AMHERST DEﬁ

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

CPI | arch

Programming
Language
(Pascal, Clu, ...)

Larch
_ Interface Language

l (Larch/Pascal, Larch/Clu, ...)

Larch

/\ Shared Language

UNIVERSITY OF MASSACHUSETTS - AMHERST + DEPARIMEN O CENVPY:

LEQ%I;IITEIEI Terminology

EN
SPECIFICATION PROGRAMMING
TERM LANGUAGE TERM
Operator Function
Sort Type
Term Expression
Trait Module (ADT), Function,
Procedure type

UNIVERSITY- OF MASSACHUSETTS AMHERST ~+DEPARTMENTOFCOUPY

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

LQBMPUTEB Goals of Larch
SCIENCE

= Composability
=Common specifications from existing specifications
sLibrary or handbook

=Readability

»|ocalize programming language dependence

*General model is very complex so use different
language specific models

= Automated Support
=Construction tool
=Syntactic checking
=Semantic checking
=Support incompleteness

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

L;nmrurin Trait
SCIENGE

Introduces
signature of the operation
(sort checking)
Constrains
\ constrains the operations &

/ relations among the operators

theory - set of theorems that can be proved about the
operator done by substitution, using rules of first order
predicate calculus with equality

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

26

CMPSCI520/620

L:omruun Examples
SCIENGE

Container: trait
introduces
new: —» C
insert: C,E > E
constrains C so that
C generated by [new, insert]

UNIVERSITY. OF MASSACHUSETTS ANHERST % DEEA

L:omruun Examples
SCIENGE

IsEmpty: trait
assumes Container
introduces
isEmpty: C — Bool
constrains isEmpty, new, insert
so that forall[c:C, e :E]
isSEmpty(new) = true
isEmpty(insert(c,e)) = false
implies converts [iSEmpty]

UNIVERSITY:OF MASSACHUSETTS AMHERST - DerAl

©Rick Adrion 2003 (except where noted)

27

CMPSCI520/620

LQBMPUTEB
)SCIENGE

Constructing traits

Priority Queue

Mulitset

UNIVERSITY OF MASSACHUSETTS-AMHERST DEIh

LQBMPUTEB
)SCIENGE

Interface Languages

=“bridge” between shared language and implementation
language

=“Two-tiered” specification approach: principal innovation
of Larch w/r/t algebraic specification languages

UNIVERSITY OF MASSACHUSETTS:AMHERST DEﬁ

©Rick Adrion 2003 (except where noted)

28

CMPSCI520/620

L“{‘.‘,‘i{’,}&'{ Interface Languages

=L arch/L incorporates “flavor” of L
= semantics, keywords
= makes it easier for those who know L to write provable
specs
= just need to adapt existing shared traits from Library (in
theory...)

=L arch/L languages designed to support data abstraction,
even if language L doesn’t directly support it (Pascal, C,
C++)

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

L“{‘.‘;’i{’,}&'{ Larch/Pascal specification

type Bag exports baglnit, bagAdd, bagRemove, bagChoose
based on sort Mset from MultiSet with [integer for E]
procedure baglnit(var b:Bag)
modifies at most [b]
ensures bpost = {}
procedure bagAdd(var b:Bag; e; integer)
requires numElements(insert(b,e)) <100
modifies at most [b]
ensures bpost = insert(b,e)
procedure bagRemove(var b:Bag; e; integer)
modifies at most [b]
ensures bpost = delete(b,e)
procedure bagChoose(var b:Bag; e; integer): boolean
modifies at most [b]
ensures if ~ isEmpty (b))
then bagChoose & count (b, epost)>0
else ~ bagChoose & modifies nothing

End Bag

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

L“!‘.',':{’,}E'E Pascal implementation of BagAdd

prodedure bagAdd(var B:Bag;e:integer);
var i, lastEmpty: 1l...MaxBagSize

begin
i:= 1;
while ((i < MaxBagSize) and (b.elems[i]<>e)) do
begin
if b.counts[i] = O then LastEmpty:=i;
i:= i+1;
end;
if b.elems[i] = e
then b.counts[i]:= b.counts[i]+1;

else begin
if b.counts[i]=0 then LastEmpty:=i;
b.elems[LastEmpty]:=e;
b.counts[LastEmpty]:=1;
end;
end[bagAdd];

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

Lﬂg‘;gﬁ&'{ Conclusions

= Interesting attempt to address:
=readability/writability of formal specs
slarge, multi-lingual environment issues
= Relationship between shared and interface languages
complex and unclear
= Relationship between interface and implementation
languages not as strong as one would like

= “Software tool support needed” (syntax-directed editors,
browsers, theorem-provers, etc.)

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

30

CMPSCI520/620

L“{‘,‘,‘;{’,}.‘,‘E Current Status

= Strong theoretical foundation
=Some practical use, especially in Europe

UNIVERSITY:OF MASSACHUSETTS AMHERST % DEP)

=Current Languages trying to be more practical

=\Wing's study of the Library Problem
=a small library database
=transactions

checkout/return book
add/remove book
get a list of books
= author
= subject
= borrower
get date/borrower for book

musers
= staff
=borrowers
=restrictions
= availability
=no book available & checked out
=# books borrowed <max

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

L“{‘,‘,‘;{’,}&E How effective are these methods?

31

CMPSCI520/620

L;nmrurin Analysis
SCIENGE

= Specification approaches
=informal
= Al
=|ogic
= executable/non-executable
= Comparisons
= formality
= life-cycle phase
=operational vs. behavioral
=modularity
=readability
=completeness
= Not considered
= concurrency
=reliability
= fault-tolerance
=security

= initialization
=what's the initial state of the
library?
= missing operations
=need more transactions?
= error handling
=what to do with errors?

=checkout, return, add, remove,
"type errors"

= missing constraints

=more than one copy in library,
checked out

= state
=what to record, change?

= “non-functional” specification
=human factors, liveness, time

UNIVERSITY OF MASSACHUSETTS AMHERST 4D

Lﬂg‘;gﬁ&'{ Conclusions

= methods do not differ radically
= style
=most use pre- and post-conditions for specifying behavior

=algebraic & set-theoretic most common for specifying data
(operational)

=model-oriented (operational) most common approach
= formal specs can

=identify diff in informal specs

=handle simple, small problems

=specify sequential functional behavior
= Challenges

=scaling

=non-functional behavior

=combining techniques

=tools

=integrating specification into the lifecycle

UNIVERSITY OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)

32

