
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

07 - Notation-State-Based

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What are we trying to represent?

ßWhat?
ßDecomposition

ßCommunications

ßFunctions

ßBehavior

ßWhere?
ßSystem level

ßComponent level

ßWhy?
ßNo one notation good for representing each

ßNeed to make connections, make consistent, complete

Interaction

abstraction refinement

S
ys

te
m

de
co

m
po

si
tio

n
 a

gg
re

ga
tio

n

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

communication specification
techniques

ßContext Diagrams

ßSADT Activity Diagrams

ßStatemate Activity Charts

ßObject Communication Diagrams

ßJSD System Network Diagrams

ßSDL Block Diagrams

ßSequence Diagrams

ßCollaboration Diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

SADT Activity Diagrams

input

output

control

mechanisms

nodes = activities
edges = flows of data,
matter, or energy between
activities.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

SADT Activity Diagrams

ßwell suited to the representation of functional
decomposition
ßcan be structured hierarchically
ßone activity box into a lower-level activity diagram

ßnot a physical but a conceptual decomposition

ßIn contrast to DFDs
ßactivity diagrams have only one kind of component

ßthe interfaces between the activities distinguish input,
output, control,and mechanism.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

regular
activity

control
activity

data store

hierarchy

Statemate Activity Charts

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statemate Activity Charts

ßControl activities are always sub-activities of regular
activities
ß a regular activity can have at most one control activity
as an immediate component.

ßControl activities are specified by extended finite state
machines, called statecharts
ßare finite state machines extended with variables that
can be updated.

ßControl activities can thus maintain a state in their
variables, can perform data processing (testing and
updating the variables), and can contain control.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More Diagrams

Object Communication Diagrams

JSD System Network Diagrams

state vector
connection

reader
process

data stream
connection

circle =
queue

object class

possible object
communication

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More diagrammatic notations

ßObject Communication Diagrams
ßused in the Shlaer–Mellor method to represent object
communications
ß nodes represent object classes
ß edges represent possible object communications
ß temporal ordering of communications is not represented.

ßstart batch shows a possible communication between an instance of
Operator and an instance of Batch

ß JSD System Network Diagrams
ßused in JSD to specify system functions
ß nodes represent processes
ß directed edges represent communications.
ß processes fi extended finite state machine, specified by means of a

process structure diagram

ßrecognize only one kind of component, a process that maintains a
state and has behavior over time
ß flat, not hierarchical

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sequence Diagrams

communicating entities
time

message

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sequence Diagrams

ßrepresents a particular sequence of messages
exchanged between a number of entities

ßstandardized as message sequence charts in telecom

ßpopular in object-oriented methods to represent
communications between objects

ßshows one particular communication sequence in one
run of the system
ßshow behavior as well as communication

ßcan be extended with conventions to represent timeouts,
global conditions across different entities, delayed
message reception, etc.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Collaboration Diagrams

entity

communication

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Collaboration Diagrams

ßpopular in object-oriented methods to represent message
exchanges between objects
ßUML extended with annotations that represent dataflows

between the communicating objects and various notations
that represent the way in which the communications are
implemented.
ßdiffer from other notations
ßnodes represent objects, not activities (DFDs, activity
diagrams, activity charts, and block diagrams)
ßnodes represent objects, not object classes (object
communication diagrams

ßas in sequence diagrams, represent the sequence of
messages in one particular scenario whereas all other
communication diagrams represent possible communications
in all possible scenarios.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Representing communication

ß two kinds of diagrams to represent communication
ßdiagrams that show communication sequence (sequence
diagrams and collaboration diagrams)
ß illustrate communications as well as behavior in one particular run

of the system

ßdiagrams that show a set of possible communications without
indicating any sequence (all other diagrams). Diagrams
ßshow communication only and do not refer to a particular run of

the system.

ß the kinds of things that can communicate (conceptual
components)
ß.Finite state machines
ßcontrol processes in DFDs are specified by finite state machines.

ßExtended finite state machines
ßcontain control, local variables, and tests and updates of these

variables.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

function specification techniques

ßused to specify the external functions of a system

ßtypes
ßFunction Refinement Trees

ßEvent-Response Specification

ßUse Case Diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case diagrams

ßrepresent external system functionality

ßa use case
ßan interaction between the system and an external entity
that has a use for that external entity

ßneed not be atomic

ßcan be described by
ßa narrative text

ßby a specification of pre- and post-conditions

ßa state transition diagram.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case diagrams

functions

communications

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case schema

functions

communications

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

function specification techniques

ßeach technique draws attention to a different aspect of
external system functionality
ßno need for formality
ßfollow good heuristics
ßdon’t put more meaning in these diagrams than is intended

ß function refinement tree
ßrelates the overall mission of a system to its functions down to
its atomic transactions.
ßshows why the system must have that function

ßUse case diagrams
ßsummarize the communications that take place during
particular functions.

ßcontext diagram
ßcan be used to specify the data exchanges between the
system and its environment.
ßdraw one partial context diagram for each use case and one
for each major system function

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

behavior specification techniques

ßshow how functions of a system or of its components
are ordered in time

ßTypes
ßProcess Graphs

ßJSD Process Structure Diagrams

ßFinite State Diagrams

ßExtended Finite State Diagrams

ßMealy Machines

ßMoore Machines

ßStatecharts

ßSDL State Diagrams

ßProcess Dependency Diagrams

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Finite State Machines (FSM's)

ßFSM's describe behavior of a system:
ßThe sequence of stages/steps/conditions that the
system goes through

ßFSM shows how a system acts/reacts to inputs

ßDoes this by showing progress through different states

ßHypothesis:
ßThe universe in which the system being described must
operate can be accurately modeled as always being in
exactly one of a finite number of states (situations)

ßThere are only a finite number of possible system inputs

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Finite State Machines (FSM)

ßfinite set of states S ={s1, ... , sn}

ßfinite set of inputs I = {i1, ..., in}

ßtransition function d: SxI fi S
ßcan be a partial function

ßrepresent as a graph

ßnodes fi states

ßedges fi inputs

ßgraph fi transition function

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why Use FSM's?

ßPrimary appeal is visualization

ßIntuitively: Can "watch" a stream of inputs "drive" the
behavior of the system as a sequence of movements
from state to state

ßKinds of questions FSM’s seem adept at helping
answer:
ß“What is a good way to think about the problem to be
solved?”

ß“What is the solution approach?”

ß“How does this program work?”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Enhancements to FSM's

ßUse of hierarchy

ßOutput annotations on edges

ßDistinguished Initial and Terminal states

ßSeparate data definitions, local and global variables

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is FSM good/not good for?

ßFocus on specific issue: safety concern
ßModel unsafe state

ßModel state transitions

ßCan unsafe state be reached?

ßDrawbacks
ßNo sense of functionality

ßNo sense of how functionality achieved

ßDifficult and generally impossible to reason about timing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

state = books on shelf

new state = libe - book

2n transitions could be >> 106 states

FSM are limited

ßLibrary example

ßgetbook: index X library fi book

ß1,000,000+ books in a good library

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Some FSM-based notations
ß Process Graphs
ßnondeterministic
ßmay have infinitely many nodes
ß from any node, infinitely many edges
may depart
ßused as interpretation structures for
formal specifications in process algebra
and dynamic logic

ß JSD Process Structure Diagrams.
ßused in Jackson Structured Programming
(JSP)
ß represent the structure of files and of

regular programs
ßused in JSD
ß represent the behavior of a system in a

modular way
ßa visual way to represent a regular
expression by means of a tree diagram

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

FSM

ßFinite State Diagrams
ßcontain only finitely many states and transitions

ßExtended Finite State Diagrams.
ßnumber of states can be increased by introducing variables that may
be tested and updated by the finite state machine
ßglobal state = explicit state (STD nodes) + extended state (variables)
ß local variables or external variables
ß local variable is declared together with the specification of the STD + scope

rules for these variables (usually the entire state machine specification)
ß external variable is declared outside the specification of the STD but can

be accessed by means of special operations that act as an interface
between the specification and the variables
ß in dataflow models, data stores are external variables with respect to the

control processes in the DFD
ß global state change requires communication between the state machine

and the external data stores

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Extended FSM
ßstate transition may change the values of variables
ßa guard may be specified for each transition that says when

the transition can occur.
ßweak interpretation,
ß the transition cannot occur if the guard is false
ßguard is in this case a necessary condition of the transition

ßstrong interpretation,
ß the transition can occur if and only if the guard is true
ßguard is a necessary and sufficient condition of the transition

ßusually initially specify guards with the weak semantics
ßwhen all conditions for a transition are specified, interpret the

conjunction of all weak guards as a strong guard
ßa guard could be the conjunction of all preconditions specified for a

transition
ß include tests in a state machine that are used to determine

the next state
ßsuch tests can be used to resolve nondeterminism
ßa test determines which of a set of possible transitions will
occur, thus a test consists of a guard for each of the possible
transitions.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Mealy & Moore Machines

ßMealy machine
ßoutput actions are associated with transitions

ßMoore Machines
ßoutputs are associated with states

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Mealy FSM for the juice plant
controller

decision
state

initial
state

In YSM
•Create and set named
clocks
•Each state has a clock that
counts the time that has
elapsed since the machine
last entered that state

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Moore FSM for the juice plant
controller

decision
state

initial
state

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statecharts

ß higraph without intersection but with Cartesian products

ß node inclusion allows us to partition a state into substates
ß Cartesian products allow us to specify parallelism
ß actions can be specified
ß along transitions (Mealy)
ß upon entry of states (Moore), and
ß exit of states

ß local variables represent the extended state.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statecharts

In Statemate, a statechart corresponds to a
control activity in an activity chart, just as in
YSM a Mealy machine corresponds to a
control process in a DFD.

done
externally

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 18

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statechart with parallelism

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

FSMs

ßdifferent notations are very similar
ßall represent states by labeled nodes and transitions by
labeled directed (hyper)edges
ßall except process dependency diagrams have a formal
semantics
ßmany different possible semantics of statecharts and statechart-

like notations

ß time in state machines.
ßpoint or interval semantics of time
ßdiscrete, dense, or continuous model of time, and assume that
transitions take time or are instantaneous
ßthese choices leads to important differences in the behavior
specified by a state diagram
ßsemantics of time is carefully defined in SDL and in the
Statemate semantics of statecharts.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 19

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

p1
t1

p2

Petri Nets

ßPetri nets are “marked” graphs
ßtwo node types: places & transitions

ßtokens mark the nodes

ßtransitions are enabled (“fire”) if all connected
places contain tokens

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets

ßExample - simultaneous firing

initial marking

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 20

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets

ßExample - asynchronous, atomic firing

t 1

initial marking

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets: Informal Definition

ßDesigned specifically for modeling systems with
interacting concurrent components.

ßConsists of a set of places and a set of transitions
ßEdges connect places and transitions.

ßOnly transition Æ place and place Æ transition links are
allowed.

ßEach place can have a finite number of tokens.

ßA transition is enabled if each of its input places has at
least one token.
ßAn enabled transition can fire: one token is taken from
each input place and one token is put into each output
place.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 21

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets

ßExample - asynchronous, atomic firing

t 1

initial marking

Was that the only firing pattern?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets

ßExample - asynchronous, atomic firing

t 1

Was that the only firing pattern?

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 22

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

firing (select enabled to fire)

t = 0

t = 1

initial marking

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

next firing

t = 2

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 23

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

or

t = 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

next firing

t = 3

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 24

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

p3

p1

t 1

p4

p2
t 3

t 2

enabled

enabled

Petri Net example

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

p1

t 1

p4

p2
t 3

t 2

p3

enabled

enabled

Petri Net example

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 25

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets: Formal Definition

ßA Petri Net is a four-tuple, C=(P,T,I,O)
ßP = {p1, p2, ..., pn}, n ≥ 0 is a finite set of

places.
ßT = {t1, t2, ..., tm}, m ≥ 0 is a finite set of

transitions.
ß I: T Æ P is the input function.
ßO: T Æ P is the output function.

ßpi is an input place of a transition tj if pi Œ I(tj)
ßpi is an output place of a transition tj if pi Œ

O(tj)
ßPetri Net markings
ßA marking m is a mapping P Æ N where N =
0, 1, 2,
ßThe marking m can be represented as a n-
vector m = (m1, m2, ...mn), n = |P |, mi Œ N,
1 ≤ i ≤ n
ßA marked Petri net M = (C, m) is a Petri net
C and a marking m .

p1

t 1

p4

p2

t 3

t 2

marking (0,0,2,1)

p3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Net for Heating Controller

start_heating

desired_temperature_reached

desired_temperature_not_reached

end_time_reached

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 26

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More on Petri nets

ß if there exists a marking which is reachable from the initial
marking where no transitions are enabled, such a transition is
called a "deadlock"
ßa PN with no possible deadlock is said to be live, called the

"liveness property”
ß in simplest PN, tokens are uninterpreted
ßin general, a selection policy can not be specified
ßhave no "policy" for resolving conflicts, potential "starvation”

ßmany extensions:
ßHierarchical Petri Nets
ßColored tokens
ß“Or" transitions
ßQueues at places

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Nets vs. Finite State
Machines

ß For any finite state machine, a Petri net can be built that models the
finite state machine
ß Petri nets are as powerful as finite state machines

ß Petri nets advantages:
ß net composition (in different forms) can be found easier than

the cross-product of finite state machines
ß parallelism and nondeterminism are represented in a more

understandable way
ß Finite state machines advantage:
ß simpler graph structure for some applications (e.g. parsers)

