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L’“"'"““" What are we trying to represent?

®SCIENCE

*What?
=Decomposition
=Communications
=Functions
=Behavior

*Where?
=System level
=Component level
*Why?
=No one notation good for representing each
=Need to make connections, make consistent, complete

System
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Hseienee techniques

= Context Diagrams

=SADT Activity Diagrams

= Statemate Activity Charts

= Object Communication Diagrams
=JSD System Network Diagrams
=SDL Block Diagrams

»Sequence Diagrams

= Collaboration Diagrams

communication specification
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Hseipnee SADT Activity Diagrams
i c i nodes = activities
g::t;':gi—c:a" —d, edges = flows of data,
- matter, or energy between
control activities.
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SADT Activity Diagrams

=well suited to the representation of functional
decomposition

=can be structured hierarchically
=one activity box into a lower-level activity diagram
=not a physical but a conceptual decomposition
*|n contrast to DFDs
»activity diagrams have only one kind of component

sthe interfaces between the activities distinguish input,
output, control,and mechanism.
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Statemate Activity Charts

= Control activities are always sub-activities of regular

activities

= a regular activity can have at most one control activity

as an immediate component.

= Control activities are specified by extended finite state
machines, called statecharts

=are finite state machines extended with variables that

can be updated.

=Control activities can thus maintain a state in their
variables, can perform data processing (testing and
updating the variables), and can contain control.
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More Diagrams
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L’“«".‘-‘i{’,}ﬁ'{ More diagrammatic notations

= Object Communication Diagrams
=used in the Shlaer—Mellor method to represent object
communications
= nodes represent object classes
= edges represent possible object communications
= temporal ordering of communications is not represented.
= start batch shows a possible communication between an instance of
Operator and an instance of Batch
= JSD System Network Diagrams
=used in JSD to specify system functions
= nodes represent processes
= directed edges represent communications.
= processes = extended finite state machine, specified by means of a
process structure diagram
=recognize only one kind of component, a process that maintains a
state and has behavior over time
=flat, not hierarchical

UNIVERSITY-OF MASSACHUSETTS AMHERST:
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Sseienee Sequence Diagrams

=represents a particular sequence of messages
exchanged between a number of entities

»standardized as message sequence charts in telecom

=popular in object-oriented methods to represent
communications between objects

=shows one particular communication sequence in one
run of the system

sshow behavior as well as communication

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

=can be extended with conventions to represent timeouts,
global conditions across different entities, delayed
message reception, etc.
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L“{‘,‘!}{’,}E‘E Collaboration Diagrams

=popular in object-oriented methods to represent message
exchanges between objects

= UML extended with annotations that represent dataflows
between the communicating objects and various notations
that represent the way in which the communications are
implemented.
= differ from other notations
=nodes represent objects, not activities (DFDs, activity
diagrams, activity charts, and block diagrams)
=nodes represent objects, not object classes (object
communication diagrams
=as in sequence diagrams, represent the sequence of
messages in one particular scenario whereas all other
communication diagrams represent possible communications
in all possible scenarios.

UNIVERSITY.OF MASSACHUSETTS ANMHERST: %D

L“!‘.'-'i{’,}ﬁ'{ Representing communication

=two kinds of diagrams to represent communication
=diagrams that show communication sequence (sequence
diagrams and collaboration diagrams)

= jllustrate communications as well as behavior in one particular run
of the system

=diagrams that show a set of possible communications without
indicating any sequence (all other diagrams). Diagrams

= show communication only and do not refer to a particular run of
the system.

=the kinds of things that can communicate (conceptual
components)
= Finite state machines
= control processes in DFDs are specified by finite state machines.
=Extended finite state machines

= contain control, local variables, and tests and updates of these
variables.

UNIVERSITY-OF MASSACHUSETTS AMHERST
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L“!‘.',':{’,}E'E function specification techniques

=used to specify the external functions of a system
=types

=Function Refinement Trees

=Event-Response Specification

=Use Case Diagrams

UNIVERSITY OF; MASSACHUSETTS-AMHERST 7+ DE

L“{‘,‘,‘i{’,}&'{ Use Case diagrams

=represent external system functionality
=a use case
=an interaction between the system and an external entity
that has a use for that external entity
=need not be atomic
=can be described by
=a narrative text
=by a specification of pre- and post-conditions
=a state transition diagram.
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L’“{‘,‘.‘;{’,}E‘E Use Case diagrams

Pipe functions
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L’“«";‘-‘i{’,}ﬁ'{ Use Case schema

Use case: Heat Cooking Tank

Description: Heat a cooking tank to the temperature prescribed by the recipe of the juice
to be mixed, and keep it at that temperature for the time prescribed by the recipe.

Reads: Cooking tank, Batch, Recipe.

Changes: 2 N
communications

In: Operator: Batch ID: 1
Thermometer: Current temperature.

QOut: Thermometer: Temperature request.
Heater: switch on, switch off.
Operator: heating finished.

functions

Assumes: Juice is present in tank.
Results: Juice has been kept at desired temperature for the desired time.
Transactions:

* The system switched on the cooking tank heater.

* The system checks the cooking tank thermometer every 10 seconds. When the desired
temperature is reached, the heater is switched off, when the temperature is too low,
the heater is switched on again.

* When the end temperature is reached, the heater is switched off and a message is sent
to the operator.

UNIVERSITY-OF MASSACHUSETTS AMHERST
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function specification techniques

=each technique draws attention to a different aspect of
external system functionality

=no need for formality

=follow good heuristics

=don’t put more meaning in these diagrams than is intended
= function refinement tree

*relates the overall mission of a system to its functions down to
its atomic transactions.

=shows why the system must have that function
=Use case diagrams

=summarize the communications that take place during
particular functions.

= context diagram
=can be used to specify the data exchanges between the
system and its environment.
=draw one partial context diagram for each use case and one
for each major system function

UNIVERSITY.OF MASSACHUSETTS AMHERST % DER
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behavior specification techniques

=show how functions of a system or of its components
are ordered in time
*Types
=Process Graphs
»JSD Process Structure Diagrams
*Finite State Diagrams
»Extended Finite State Diagrams
=*Mealy Machines
=Moore Machines
=Statecharts
=SDL State Diagrams
=Process Dependency Diagrams
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L“!‘.'-'i{’,}ﬁ'{ Finite State Machines (FSM's)

*FSM's describe behavior of a system:

*The sequence of stages/steps/conditions that the
system goes through

*FSM shows how a system acts/reacts to inputs
=Does this by showing progress through different states
»Hypothesis:

*The universe in which the system being described must
operate can be accurately modeled as always being in
exactly one of a finite number of states (situations)

*There are only a finite number of possible system inputs

UNIVERSITY:OF MASSACHUSETTS AMHERST D

L:omrum Finite State Machines (FSM)
SCIENGE

=finite set of states S ={s,, ..., s}
=finite set of inputs | = {i,, ..., i}
=transition function &: Sxl = S

=can be a partial function
=represent as a graph

*nodes = states

=edges = inputs

=graph = transition function

UNIVERSITY-OF MASSACHUSETTS AMHERST D
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L“{".,';{’,}.‘,E Why Use FSM's?

*Primary appeal is visualization

=|ntuitively: Can "watch" a stream of inputs "drive" the
behavior of the system as a sequence of movements
from state to state

=Kinds of questions FSM’s seem adept at helping
answer:

=“What is a good way to think about the problem to be
solved?”

=“What is the solution approach?”
=“How does this program work?”

UNIVERSITY OF; MASSACHUSETTS-AMHERST DEF?

L“{‘.‘;‘:{’,}E‘E Enhancements to FSM's

=Use of hierarchy

= OQutput annotations on edges

= Distinguished Initial and Terminal states

= Separate data definitions, local and global variables

UNIVERSITY-OF MASSACHUSETTS AMHERST DEﬁ
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L“!‘.','i{’,}&'{ What is FSM good/not good for?

*Focus on specific issue: safety concern
=Model unsafe state
=Model state transitions
=Can unsafe state be reached?
= Drawbacks
=No sense of functionality
=*No sense of how functionality achieved
=Difficult and generally impossible to reason about timing

UNIVERSITY OF; MASSACHUSETTS-AMHERST 7+ DE

L,nycl;g,}g'g FSM are limited

=L ibrary example
=getbook: index X library = book
=1,000,000" books in a good library

state = books on shelf

Q/’Q new state = libe - book

2" transitions could be >> 10° states

UNIVERSITY-OF MASSACHUSETTS AMHERST ~+DE
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L’“!‘,'-';{’,}E'E Some FSM-based notations

= Process Graphs
= nondeterministic
=may have infinitely many nodes
=from any node, infinitely many edges
may depart nd tim )
=used as interpretation structures for enc_time start_heating
formal specifications in process algebra
and dynamic logic
= JSD Process Structure Diagrams. timeout

=used in Jackson Structured Programming
(JSP)

start_heating

TEMPERATURE_

= represent the structure of files and of RAMP_

CONTROL

regular programs
=ysed in JSD TemperaTURE_*
= represent the behavior of a system in a e
modular way
=a visual way to represent a regular
expression by means of a tree diagram

T
I start_heating I r HEATING

start_heating HNG— endtime

]
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1778 Fsm

= Finite State Diagrams
= contain only finitely many states and transitions
= Extended Finite State Diagrams.
= number of states can be increased by introducing variables that may
be tested and updated by the finite state machine
= global state = explicit state (STD nodes) + extended state (variables)
=|ocal variables or external variables

= local variable is declared together with the specification of the STD + scope
rules for these variables (usually the entire state machine specification)

= external variable is declared outside the specification of the STD but can
be accessed by means of special operations that act as an interface
between the specification and the variables

= in dataflow models, data stores are external variables with respect to the
control processes in the DFD

= global state change requires communication between the state machine
and the external data stores

UNIVERSITY-OF MASSACHUSETTS AMHERST
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L“!‘.',';{’,}.‘,E Extended FSM

= state transition may change the values of variables
=a guard may be specified for each transition that says when
the transition can occur.
=weak interpretation,
= the transition cannot occur if the guard is false
=guard is in this case a necessary condition of the transition
=strong interpretation,
= the transition can occur if and only if the guard is true
=guard is a necessary and sufficient condition of the transition
=usually initially specify guards with the weak semantics
=when all conditions for a transition are specified, interpret the
conjunction of all weak guards as a strong guard
=a guard could be the conjunction of all preconditions specified for a
transition
=include tests in a state machine that are used to determine
the next state

=such tests can be used to resolve nondeterminism

=a test determines which of a set of possible transitions will
toccur{_’[hus a test consists of a guard for each of the possible
ransitions.

UNIVERSITY: OF MASSACHUSETTS AMHERST %)

L“!‘.'-'i{’,}ﬁ'{ Mealy & Moore Machines

=*Mealy machine

=output actions are associated with transitions
*Moore Machines

moutputs are associated with states

UNIVERSITY-OF MASSACHUSETTS AMHERST )
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Mealy FSM for the juice plant
L“ﬂ-’i{’,}ﬁ'{ controller
initial
state

IDLE
secsiCONTAOLLING) - 10 [e;my‘(_mjeu; T

T: turn_ofl_heater
Stheating_finighed
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D: monitor_deadiing

T comparg_with_tesired_temperature
: monitor_deadling

< COMPARING

desirad_temperatura_not_reached

desired_temperature_reached

decision
state

T: turn_on_heater T: turn_off_heater

CONTROLLING

In YSM

*Create and set named
clocks

*Each state has a clock that
counts the time that has
elapsed since the machine
last entered that state

LOMPUTEII

Moore FSM for the juice plant
>seienee controller

starl_heating

COMPARING

initial
state

compare with
desired temperature

d

turn on heater

—— ] timeout eCISlon
desired desired
temperature temperature State
not reached
reached
HEATING NOT_HEATING

turn off heater

end time reached

end time reached

TURNING_OFF

turn off heater
finish controlling

FINISHED

start heating

heating finished
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Lﬂg‘;{’,}&'{ Statecharts

= higraph without intersection but with Cartesian products

Graph 1 Graph 2 /|Graph 3

= node inclusion allows us to partition a state into substates
= Cartesian products allow us to specify parallelism
= actions can be specified
= along transitions (Mealy)
= upon entry of states (Moore), and
= exit of states
= local variables represent the extended state.

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

L"ﬂ:’i{’ﬂﬁ'ﬁ Statecharts

(

timeout(entered(MONITORING)}, endtime)

start_heating
start{turn_oft_heater);
heating_finished

MONITOR_TEMPERATURE

COMPARING

entry: start(compare_with_~
desired_temperature)

timeout(entered(

HEATER_ON)/10)  desired

tempeyature_ tempera
‘ reache

In Statemate, a statechart corresponds to a
control activity in an activity chart, just as in
YSM a Mealy machine corresponds to a
control process in a DFD.

CONTROL_TEMPERATURE_RAMP

done

externally

timeout(entered(
KEATER_OFF), 10))

Lk
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Statechart with parallelism

CONTROL_TEMPERATURE_RAMP

timeout(entered(MONITORING),

start_heating

MONITOR!Nq

MONITOR_TEMPERATURE

start(turn_off_heater);
heating_finished

( MONITOR_PRESSURE h

start(monitor_press)

QCIPARIKG
. imeoutented|
ety satams i
e omoueie)

CLOSED

entry: slart{close_valve|

pressure_OK pressure_too_high
stari(close_val start(open_valve)

VALVE_OPEN

=
sﬁsi{um_w_nm]
\

\ HEATER O

B
£
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FSMs

= different notations are very similar

=all represent states by labeled nodes and transitions by
labeled directed (hyper)edges

=all except process dependency diagrams have a formal
semantics

= many different possible semantics of statecharts and statechart-
like notations

=time in state machines.

=point or interval semantics of time

=discrete, dense, or continuous model of time, and assume that
transitions take time or are instantaneous

=these choices leads to important differences in the behavior
specified by a state diagram

=semantics of time is carefully defined in SDL and in the
Statemate semantics of statecharts.

UNIVERSITY-OF MASSACHUSETTS AMHERST
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L’“{‘,‘{;{’,}E‘E Petri Nets

=Petri nets are “marked” graphs
stwo node types: places & transitions
stokens mark the nodes

stransitions are enabled (“fire”) if all connected
places contain tokens

t1
p1 p2

UNIVERSITY. OF MASSACHUSETTS AVHERST - DEPARTMEN

L;omrurm Petri Nets
)SCIENCE

=Example - simultaneous firing

initial marking

P\. |
h\/o/

‘ '| "
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L:lePIITEII Petri Nets
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t]

=Example - asynchronous, atomic firing

initial marking

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

L“{‘.‘;‘i‘;’,}&'{ Petri Nets: Informal Definition

»Designed specifically for modeling systems with
interacting concurrent components.

= Consists of a set of places and a set of transitions
=Edges connect places and transitions.

=Only transition — place and place — transition links are
allowed.

=Each place can have a finite number of tokens.

= A transition is enabled if each of its input places has at
least one token.
=An enabled transition can fire: one token is taken from
each input place and one token is put into each output
place.

UNIVERSITY-OF MASSACHUSETTS AMHERST ++D)
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EﬂMPIITEII Petri Nets
) SCIENCE

]

=Example - asynchronous, atomic firing

initial marking

S

Was that the only firing pattern?

UNIVERSITY:OF MASSACHUSETTS AMHERST % IDERARTMEN

EﬂMPIITEII Petri Nets
) SCIENCE

]

=Example - asynchronous, atomic firing

S

Was that the only firing pattern?

o | &0
h\/o
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L:omrum firing (select enabled to fire)
'SCIENGE

initial marking

T T
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L:pmrurm next firing
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L:omrurm or
SCIENCE
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L:omrurm next firing
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Petri Net example

"@

- enabled |

p4

p3 p2
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Petri Net example

"@®
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L“{‘.‘;’i‘;’,}&'ﬁ Petri Nets: Formal Definition
= A Petri Net is a four-tuple, C=(P,T,I,0) P ‘
*P ={p,, Py, ---» P}, N 2 0 is a finite set of
places.
*T={t, t,, ..., t,,}, m 2 0 is a finite set of ‘1
transitions.

= |: T — Pis the input function.

=O: T — P is the output function.
* p; is an input place of a transition t if p; < I(t)
. [()), its an output place of a transition t; if p; e

= Petri Net markings

=A marking m is a mapping P - N where N =
0,1,2, ...
=The marking m can be represented as a n-

vectorm =(m;, m,, ..m.),n=|P]|, m;eN, t2
1<i<n

= A marked Petri net M = (C, m ) is a Petri net o
C and amarkingm . p3 > P

marking (0,0,2,1)

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

L“{‘.‘,‘i‘;’,}&'{ Petri Net for Heating Controller

desired_temperature_reached

start_heating

end_time_reached

desired_temperature_not_reached

UNIVERSITY-OF MASSACHUSETTS AMHERST ++D)
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L“{‘.‘-‘i{’,}ﬁ'{ More on Petri nets

=if there exists a marking which is reachable from the initial
marking where no transitions are enabled, such a transition is
called a "deadlock"

=a PN with no possible deadlock is said to be live, called the
"liveness property”

=in simplest PN, tokens are uninterpreted

=in general, a selection policy can not be specified

=have no "policy" for resolving conflicts, potential "starvation”
=many extensions:

=Hierarchical Petri Nets

=Colored tokens

=“Or" transitions

=Queues at places

UNIVERSITY.OF MASSACHUSETTS AMHERST % DER

Petri Nets vs. Finite State
L"ﬂ-’i{’ﬂﬁ'{ Machines

= For any finite state machine, a Petri net can be built that models the
finite state machine

= Petri nets are as powerful as finite state machines
= Petri nets advantages:

= net composition (in different forms) can be found easier than
the cross-product of finite state machines

= parallelism and nondeterminism are represented in a more
understandable way

= Finite state machines advantage:
= simpler graph structure for some applications (e.g. parsers)

UNIVERSITY-OF: MASSACHUSETTS AMHERST 51
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