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L’“{‘.‘;’i‘;’,}&'{ How to write it down?

= natural language

= structured natural language

= pictorial notation
=Charts, Diagrams, Box-and-Arrow Charts
=Graphs

= Flowgraphs
=Parse Trees
= Call graphs
= Dataflow graphs
= data models types of stake
=formal language(s)
=state-oriented
=function-oriented
=object-oriented
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L“{‘,‘!}{’,}E‘E Optative vs. indicative mood

» Indicative: describes how things in the world are
regardless of the behavior of the system

=“Each seat is located in one and only one theater.”

= Optative: describes what you want the system to
achieve

=“Better seats should be allocated before worse seats at
the same price.”

= Principle of uniform mood

=Indicative and optative properties should be entirely
separated in a document

sReduces confusion of both the authors and the readers
*Increases chances of finding problems

=|f the software works right, both sets of properties will
hold as facts

UNIVERSITY: OF MASSACHUSETTS AMHERST %)

L“!‘.'-'i';’,}ﬁ'{ Mood mixing: example

= The lift never goes from the nt" to the n+2" floor without passing
the n+1st floor.

= The lift never passes a floor for which the floor selection light inside
the lift is illuminated without stoping at that floor.

= |f the motor polarity is set to up and the motor switch setting is
changed from off to on, the lift starts to rise within 250 msecs.

= |f the upwards arrow indicator at a floor is not illuminated when the
lift stops at the floor, it will not leave in the upwards direction. **

= The doors are never open at a floor unless the lift is stationary at
that floor. ***

= When the lift arrives at a floor, the lift-present sensor at the floor is
set to on.

= |f an up call button at a floor is pressed when the corresponding
light is off, the light comes on and remains on until the call is
serviced by the lift stopping at that floor and leaving in the upwards
direction.

UNIVERSITY-OF MASSACHUSETTS AMHERST )

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

L“{‘,‘.‘;{’,}E‘E Natural Language

= Advantages
. =Easy to train users
=Clarity is possible (but may be difficult)
=Completeness is possible (but by no mean assured)
=Easily modified
|t is the “least common denominator”
= Disadvantages

=Determining consistency between natural language
artifacts and anything else is hard/subjective

= Ambiguity in natural language is easy and often intentional
=Clear natural language expression is very difficult

=The longer the text, the more information, the more the risk of
inconsistency, the harder it is to determine

= No way of knowing when a specification is "complete"

UNIVERSITY. OF MASSACHUSETTS ANHERST D)

L:ﬂ{',lzl;'il,}g'i‘ Natural Language Summary

= Cannot reason definitively about natural language

=Cannot be sure that natural language artifacts are
consistent with other artifacts

= Assurances to stakeholders are shaky

UNIVERSITY-OF MASSACHUSETTS AMHERST D
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LIIMPIITEII
)SCIENCE

How to write it down?

=structured natural language
= pictorial notation
=Charts, Diagrams, Box-and-Arrow Charts
=Graphs
= Flowgraphs
=Parse Trees
= Call graphs
= Dataflow graphs
=formal language(s)
=state-oriented
=function-oriented
=object-oriented

UNIVERSITY OF; MASSACHUSETTS-AMHERST Dg

LIIMPIITEII
)SCIENCE

Structured “Natural” Language

=Disciplined Use of Natural Language
*Response to natural language problems of:
=Imprecision
=Ambiguity
=Consistency (especially when due to size)
=|nability to reason effectively and definitively
=Familiar approaches:
=Restricted use of reserved terms

=Structuring (paragraph numbering, outline form,
templates, etc.)

=Other, earlier examples of disciplined use of natural
language:
=l egal documents
=Recipes
=Help systems

UNIVERSITY-OF MASSACHUSETTS AMHERST
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L’“{‘,‘;‘i‘;’,}&'{ Declarative vs. Imperative

=Declarative specification
=Pre and postcondition pairs, where

=a precondition is a condition on the input and system state
at the start of executing the function and the postcondition is
a condition on the output and the system state after the
execution of the function.

=Implementation independent, but under specifies
=Imperative specification

=describe the activities to be performed to get from the
input and initial system state to the output and resulting
system state.

=|_eads to executable specification, but over specifies
by giving an implementation

UNIVERSITY OF; MASSACHUSETTS-ANHERST 7+ DEP

L’“{‘.‘;‘i{’,}f,‘{ Declarative

Evert How input: start hasting
Diata flow input-batch 1D
Data store input: ALLOCATION OF BATCH TG cooKING Tang | But what about S;ate
HEATER OF COOKING TANK of other data”
RECIFE OF BATCH

Ewent Flow awtput: starl cantrolling

Preconditian 1:
Batch 10 ooours eactly ance in ALLOCATION OF BATCH TO ZOOHEING TANK

and allecation af batch is cooking tank 1D

and recipe far batch |0 occurs in RECIPE OF BATCH with tima and end temperature

Pestecoadition 1

new{ramp D) + batch ID + cooking tank |0 + heater D774 end time + end temperature
exists in TEMPERATURE RAMP DATA

Precondition 2

batch 1D doss nat secur exactly ance ln ALLOCATION OF BATCH TO COORING TANE
Pestoondstion 2 error

Frecondition 3:
recipe for batch ID does nat cocur in RECIFE OF BATCH temgperature
Pasteondition 3. erroe

Figura 17. A declarative specifieation.
ACM Computing Surveys, Vol. 30, No. 4, December 1998

UNIVERSITY- OF MASSACHUSETTS AMHERST ~+DEP
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L’“ﬂ-‘i‘;’,}ﬁ'{ Imperative

Eweitt Fhors INpUT STart heating

Data flow input:batch 1D Implementation
Diata store inputALLOCATION OF BATCH TO COORKIMG TANK P ific?
HEATER OF COOKING TARK SpecliiC

RECIPE OF BATCH
Ewverit flow output: start contralling
Diata store autpet: TEMPERATURE RAMP DATH

f batch |10 aocurs eactly once in ALLOCATION '-'J'F HP-I CHT
then el coaxing tank < fram
gut heatar 1D fram HEATER I:IF COOKING _"-NK.
if recipe far bazch 1D occurs in RECIPE OF BATCH
than get end time and and temperature Tram RECIPE OF BATCH,
craate ramp 10,
update TEMPERATLURE RAMP DATA
with ramp IO + batch ID + cooking tank 1D + hester 1D 4+ el Time + eeed 1emparatune
else error,
wlim error

Figura 18, Animperative sperification.

UNIVERSITY OF; MASSACHUSETTS-AVHE

L’“ﬂ-‘i{’,}ﬁ'{ PSL (Problem Statement Language)

DESCRIPTION:
this process performs those actions needed to interpret
time records to produce a pay statement for each hourly
em onee

KEYWORD |ndependent

ATTRIBUTES ARE:
complexn¥I Ievel

GENERATES Fay-statement error-listing;

RECEIVES: ime-c

SUBPARTS ARE: hourly- paycheck-valldatlon hourly-emp-update,
h-report-entry-generates, hourly paycheck-productlon

PART OF: payroll Processmg,

DERIVES: yay-statement;

USING: ime-card, hourly-employee -record;
DERIVES: hourly-employee-report

USING: time-card, hourly-employee -record;
DERIVES: error-llstlng

USING: time-card, hou

r! J-employee -record;
PROCEDURE: read record add up hours, multi |fly by pay rate..
HAPPENS: number-of—payments TIMES-PE pay-period;
TRIGGERED BY: hourly-emp-processing-event;
TERMINATION-CAUSES: new-employee-processing-event;
SECURITY IS: company-only;

©1977 IEEE Computer Society Press

UNIVERSITY-OF MASSACHUSETTS AMHE
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L’“«".‘-‘i{’,}ﬁ'{ PSL (Problem Statement Language)

PROCEDURE:

. compute gross pay from time card data

. compute tax from gross pay

. subtract tax from gross pay to obtain net pay

. update hourly employee record

. update department record accordingly

. generate paycheck

Note: if status code indicates that employee did not work
this pay period, no processing will be done for this employee

ONHhWN=

©1977 IEEE Computer Society Press

UNIVERSITY OF; MASSACHUSETTS-AVHE

L’“«".‘-‘i‘;’,}ﬁ'{ Discipline Mechanisms in PSL

= Use of keywords (defined elsewhere in specification)
=fosters precision, clarity
=helps support consistency determination: some

=keyword fields have defined relations to others (eg. Input-to and
output-from)

= Use of templates
=facilitates determination of completeness
= fosters clarity
= facilitates consistency checking

= Use of structure:
HIERARCHY:
=standard practice for dealing with size, complexity
= exploits innate human capacity for abstraction
DATA FLOW:

CONTROL FLOW:

UNIVERSITY-OF MASSACHUSETTS AMHE
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L:ﬂMPllTEII

»big step in the right direction

=mechanisms for reducing ambiguity

"but
stakeholder groups

ambiguity remains

Sseienee Otructured Natural Language

simprovement over unstructured natural language
=possible to determine some kinds of consistency thru:

*mechanisms for fostering completeness
sstructuring mechanisms for dealing with complexity

sstilted form reduces clarity: less suitable for some key
=some residual reliance on natural language means

wsize is still a problem: PSL specs (for example) can be
huge: consistency determination is long/error prone

UNIVERSITY. OF MASSACHUSETTS ANMHERST % DES

L“!‘.'-'i';’,}ﬁ'{ How to write it down?

= pictorial notation
=Charts, Diagrams, Box-and-Arrow Charts
=Graphs
= Flowgraphs
=Parse Trees
= Call graphs
= Dataflow graphs
=formal language(s)
=state-oriented
=function-oriented
=object-oriented

UNIVERSITY-OF MASSACHUSETTS AMHERST
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L:DMPIITEII

spiENce Various charts

*Flowcharts

= Storyboards

=Cause and Effect Diagram
=Pareto Chart

»Histogram

Reason Phone Not Answered

Machinery Materials

L&N Directory
Hot Updated

Direciory

Tl Wron®, Extension.

Call comes
before/after
hours

Phone Mot
Answered

Zetn out not estabilished

UNIVERSITY-OF MASSACHUSETTS AN

Sereen Lot 45, screns

Bucrgomeds
e —

L:DMPIITEII

spiENce Various charts

»Flowcharts

= Storyboards

=Cause and Effect Diagram
=Pareto Chart

80/20 Rule

» 80% of process defects arise from 20% of
the process issues.

* 80% of delays in schedule arise from 20% of
the possible causes of the delays.

* 80% of customer complaints arise from 20%
of your products or services.

=Histogram ... and more
Histogram Pareto Chart
5 50 J_/J_,,-c 100%
M0 80%
4 3 /4*""
5 § 301 e B0%
g’ g 20 - 0%
£, < 9p 0%
B i : : : ! 0%
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L:ﬂMPllTEII

»ScIENeE Pictorial and Diagrammatic Approaches

»Diagrams composed of visual elements
=rigorously defined (definable?) semantics
=used as modeling devices
=depict key structural aspects of system

= Benefits
=greatly improve clarity
=greatly improve clarity consistency
»facilitate completeness of notation
=reduce ambiguity

=but
*reduce modifiability, perhaps significantly
srestrictions in semantics impede completeness
=more on these issues later.....

UNIVERSITY. OF MASSACHUSETTS ANMHERST % DES

L“!‘.'-'i';’,}ﬁ'{ How to write it down?

= pictorial notation

=Graphs

= Flowgraphs

=Parse Trees

= Call graphs

= Dataflow graphs

=formal language(s)

=state-oriented
=function-oriented
=object-oriented

UNIVERSITY-OF MASSACHUSETTS AMHERST

©Rick Adrion 2003 (except where noted)
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427 Graphs

=A graph, G = (N, E), is an ordered pair consisting of a node set,
N, and an edge set, E = {(n;, n,)}
=If the pairs in E are ordered, then G is called a directed graph,
and is depicted with arrowheads on its edges
=If not, the graph is called an undirected graph
=Graphs provide a mathematical basis for reasoning about s/w

=Graphs are suggestive devices that help in the visualization
of relations. The set of edges in the graph are visual
representations of the ordered pairs that compose relations

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

L“{‘.‘;’i‘;’,}&'ﬁ Relations:

A relation, R, over a set, S = {s;} is a set of ordered n-tuples
R={r}, where r,=(s;4, Si5, ..., Si,)

A binary relation is a relation where all the tuples are 2-tuples
If (s;, s; ) is an element of R, then we often write sR s;
Another view of relations:

The relation, R, over the set S can be defined as:
R={(s; .., s) | PRED(s;, ..., ;) =True, for some predicate, PRED}

If the tuples are ordered, the relation is called an ordered relation

If the tuples, <t ; , t;,, .... t;,> are unordered, the relation is an
unordered relation

UNIVERSITY-OF MASSACHUSETTS AMHERST ++D) ﬁ
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L“{‘,‘,‘;{’,}E‘E Relations & graphs

=*Binary relations (sR s;)can be represented as a graph

=unordered
siR's;

=ordered

=General relations can be represented as multigraphs,
hypergraphs

UNIVERSITY OF; MASSACHUSETTS-AMHERST 7+ DE

U278 Some Examples

Let | = {all integers},
Define Q= { (x,y,2) | X, ¥, z are integers
andy=x"2,z=x"3}

Let S = {all states of the U.S., S},
Define B ={ (S, S)) | S;and S, share a border}

Let L = {all statements L, in a program, P},
Define ImmFol = {(L, L;) | the execution of L; may
immediately follow the execution of L, for some

execution of P}

UNIVERSITY-OF MASSACHUSETTS AMHERST ~+DE

©Rick Adrion 2003 (except where noted)
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U270 Flowgraphs

Let S = {all statements s, in a program, P}; and let
ImmFol = { (s, s;) | The execution of s, immediately
follows the execution of s; for some execution of P }

Then FG = (S, ImmFol) is called the flowgraph of P
*FG is an ordered graph

=Every execution sequence (ie. the sequence in which
the statements of P are executed for a given execution
of P) corresponds to a path in FG.

=However, the converse is not true. A path through FG
may not correspond to an execution sequence for P

=A loop in P appears as a cycle in FG

UNIVERSITY OF MASSACHUSETTS ANHERST 7 DEPARTMEN

L’“{‘.‘;‘i{’,}&'ﬁ Example with an infeasible path
1
X>0 X<=0
2 \ 4 3
— e
X>0,Y>0 a v X<=0,Y=5
T aew —
7

UNIVERSITY- OF MASSACHUSETTS AMHERST ~+DEPARTVEN

©Rick Adrion 2003 (except where noted)
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L“!‘.',':{’,}E'E Some Properties of Relations

= Some familiar properties of ordered binary relations, R, over
the set S={s;}:

=Symmetry: s;R's; ==> s;R's; for all pairs, s;and s;in S

=Reflexivity: sRs, forallsinS

=Transitivity: s;R's; and s;R s, ==> s;R's;, for all s, s;and s,
in S

= A relation that is symmetric, reflexive and transitive is called
an equivalence relation

*If R = {(s;, s))} is transitive, then C={(s,, s;,)| there exists a
sequence, i1,i2, ..., in, such that s,=s;; R s;, s, R sj3, ...

Si.1 R'S;, = s, } is called the transitive closure of R

=Antisymmetry: s;R's;==>~(s; R s)) for all pairs, s;and s;in S

=Irreflexivity: s ~R s for all s in S

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

1778 Examples

If S={all subroutines written in Fortran} s, R's, if and only if s,
calls s,, then R is an irreflexive relation

Let PS ={c,, all the statements in a program that consists of
a set of modules, M={m} },
INMOD = { (c,, ¢) | ¢, and c; appear in
the same module m, }
INMOD is an equivalence relation

The relation ImmFol (earlier slide) is not transitive
Change ImmFol to Fol, by defining Fol = { (L1, L2) | the

execution of L2 may follow the execution of L1 for
some execution of P} Fol is still not transitive

UNIVERSITY-OF MASSACHUSETTS AMHERST ++D) ﬁ
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U7 patns

A path, P, through an ordered graph G=(N ,E) is a sequence
ofedges, (<n;, N4>, <Ny, N ;,> ..,<n;, N;;>)such
that n; 4 =n; forall2<ksn

A path, UP, through an unordered graph UG=(N,U) is a
sequence of edges, (<n;{, N1 >, <N ;5 N5 >, ..., <N, N,
> ) such that all of the <n; , , n; > can be ordered to assure
thatn;,,=n,; forall2<ks<n

In either case, n ;, is called the start node and n , is called the
end node.

The length of a path is the number of edges in the path
A graph G is connected if and only if, for every pair of nodes,
n4, Ny, there is path from one of them to the other with G
considered to be an unordered graph.

UNIVERSITY OF; MASSACHUSETTS-AMHERST 7+ DE

LBMPUTEII Paths

»SCIENCE

»a path, P, through a directed graph
G = (N, E) is a sequence of edges,

(M Ng ) (N N2 ), s (Mg NGy )
such that n;, , = n;, forall 2< k <t

=n, ; is called the start node and n;; is called the end node
»the length of a path is the number of edges in the path

»paths are also frequently represented by a sequence of
nodes (N4, Ni5, Ni3, -ooy Ny y)

UNIVERSITY-OF MASSACHUSETTS AMHERST ~+DE

©Rick Adrion 2003 (except where noted)
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427 Cycles

node are the same

the graph is called acyclic

UNIVERSITY OF; MASSACHUSETTS-AMHERST 7+ DE

=a cycle in a graph G is a path whose start node and end

=a simple cycle in a graph G is a cycle such that all of its
nodes are different (except for the start and end nodes)

=if a graph G has no path through it that is a cycle, then

1778 Examples

Cycle:1,3,2,4,3,1
Simple cycle:1,2,3,1

AN

UNIVERSITY-OF MASSACHUSETTS AMHERST ~+DE

©Rick Adrion 2003 (except where noted)
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U Troos

=A cycle in a graph G is a path whose start node and end
node are the same

= A simple cycle in a graph G is a cycle such that all of its
nodes are different (except for the start and end nodes)

=|f a graph G is connected and has no path through it that is a
cycle, then the graph is called acyclic.

= An acyclic unordered graph is called a tree

=|f the unordered version of an ordered graph is acyclic, the
graph is called a directed tree

= A collection of trees is called a forest

= |f the unordered version of an ordered graph has cycles, but
the ordered graph itself has no cycles, then the graph is
called a Directed Acyclic Graph (DAG)

UNIVERSITY OF; MASSACHUSETTS-AMHERST 7+ DE

U Troos

»an acyclic, undirected graph is called a tree

=if the undirected version of a directed graph is acyclic,
then the graph is called a directed tree

=if the undirected version of a directed graph has cycles,
but the directed graph itself has no cycles, then the
graph is called a Directed Acyclic Graph (DAG)

UNIVERSITY-OF MASSACHUSETTS AMHERST ~+DE

©Rick Adrion 2003 (except where noted)
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L;nmrurin Examples
SCIENCE

AL
R

cyclic undirected / \ / \ directed acyclic
graph \/ \ \/ \ graph (DAG)

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

L“{‘.‘;’i{’,}&'{ Abstract Syntax Tree (AST)

=a common form for representing expressions
=executable statements are expressions
=programs are expressions, where the operator is
execute and the operands are the statements
=2 kinds of nodes: operator and operands
=operator applied to N operands
= An abstract syntax graph G = ( N1, N2, E ) where N1
are nodes that represent operators in the language, N2
are nodes that represent identifiers or literals , and E
represents is "applied to"

UNIVERSITY-OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)
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Lﬂg‘}.‘;{’,}ﬁ'{ Abstract Syntax Tree

X:=A +5;

UNIVERSITY.OF MASSACHUSETTS AMHERST % DER

Lﬂg‘}.‘;{’,}ﬁ'{ Abstract Syntax Trees

»have many advantages

=provide a visual display of the body of an object
=body of an assignment, addition, while, etc.

ssupports incremental modification
=incremental syntactic or semantic analysis

=basis for structural editing
=user is provided with a template and fills in the slots
=can assure syntactic consistency

=need to control granularity of consistency checking
=e.g., keystroke, semi-colon, user-request

=used to create other graph models

UNIVERSITY-OF: MASSACHUSETTS AMHERST 51

©Rick Adrion 2003 (except where noted)
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Lﬂmg}g‘{ computation tree

=models all the possible executions of a system

=at each node, shows the state (value) of each variable
= effectively infinite number of paths

=some paths may be effectively infinite

UNIVERSITY OF; MASSACHUSETTS-AMHERS

L:ompum example computation tree
)SCIENCE

total, value, count, maximum : pos int;

total := 0;
<total, value, count, maximum>
count :=1; <0.9.9.9>
read maximum; <0.9.1.9>
while (count <= maximum) do
| <0,9,1,1> | | <0,8,12> | -+ [<0,8,1,max pos
read value; L

total := total + value; <0,1,1,2> .. |0, max pos,1,2>

count: = count + 1;
<1,1,1,2>

endwhile;

print total;

UNIVERSITY-OF MASSACHUSETTS :AMHERS

©Rick Adrion 2003 (except where noted)
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Lﬂ,{‘},‘;{’,}&'{ Computation Trees

»have advantages
srepresent the space that we want to reason about
=for anything interesting they are too large to create or
reason about
=other models of executable behavior are providing
abstractions of the computation tree model
=abstract values
=abstract flow of control
=specialize abstraction depending on focus of analysis

UNIVERSITY.OF MASSACHUSETTS AMHERST % DER

Lo;q;;g,}g'g Callgraphs

*Let PROC = {procedures S, comprising a program P}
and CALLS ={(S;, S;) | S; is directly invoked from S,
during some execution of P}, then CG = (PROC, CALLS)
is called the Call Graph of P

*CGis

=a directed graph
=does not represent the order entities are invoked
=does not represent the number of times an entity is invoked

=a cycle in g indicates that the nodes along the cycle
syntactically participate in a recursive calling chain

=if P is written in a language that does not allow recursion,
then CG will be acyclic

=provides a framework for inter-component analysis

UNIVERSITY-OF: MASSACHUSETTS AMHERST 51

©Rick Adrion 2003 (except where noted)
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Lﬂ,{‘,‘.‘;{’,}f,‘{ Call Graph Example

Lﬂ!‘.‘,‘;{’,}f,‘g Control Flow Graph (CFG)

srepresents the flow of executable behavior
*G=(N, E, S, T)where
sthe nodes N represent executable instructions
(statement or statement fragments);

sthe edges E represent the potential transfer of
control;

=S is a designated start node;
*T is a designated final node

sE = { (ni, nj) | syntactically, the execution of nj
follows the execution of ni}

UNIVERSITY-OF MASSACHUSETTS AMHERST

©Rick Adrion 2003 (except where noted)
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L:OMPIITEII
SCIENCE

Control Flow Graph (CFG)

»nodes may correspond to single statements, parts of
statements, or several statements

=execution of a node means that the instructions
associated with a node are executed in order from the
first instruction to the last

=nodes are 1-in, 1-out

UNIVERSITY. OF MASSACHUSETTS AMHERST

L:OMPIITEII
SCIENCE

Control Flow Graph Model

read n;

i=1;

sum := 0;

product :=1;

while i < n do
sum :=sum +1;
product := product * i;
i=i+1;

endwhile;
write sum;
write product;

FUODOOE

UNIVERSITY-OF MASSACHUSETTS AMHER! :

©Rick Adrion 2003 (except where noted)
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L:ompurm Reducing the CFG
SCIENGE

=basic blocks are nodes that
contain sequential
execution

= Can reduce the number of
nodes in the CFG, but may
add more complications to
the analysis

write prod

FOOOUOUE

UNIVERSITY:OF MASSACHUSETTS ANHERST

L’“«";‘-‘i{’,}ﬁ'{ Benefits of CFG

=probably the most commonly used representation
=numerous variants
=basis for inter-component analysis
=collections of CFGs
=basis for various transformations
=compiler optimizations
=S/W analysis
=basis for automated analysis

=graphical representations of interesting programs are
too complex for direct human understanding

UNIVERSITY-OF MASSACHUSETTS :AMHERS :

©Rick Adrion 2003 (except where noted)
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L“{‘,‘-‘;{’,}E‘E Some dataflow relations

=DataFlow(i, j) if node i creates data that node j uses
=Input(n) if n is a node that supplies initial input data
= Qutput(n) if n is a node that transmits data to end users
= EdgeAnnotation(e, text) if the string text describes the data
that flows along edge e
= NodeAnnotation(n, text) if the string text describes the
functioning of node n
= Questions this helps answer:
=Why create this data? Who uses this data? What results
does the end user see? What does the end user have to
input?
=Questions this can’t answer: What is the exact sequence of
events? How does a node do its job?

UNIVERSITY.OF MASSACHUSETTS AMHERST % DER

L“{‘,‘!}{’,}E‘E Program Dependence Graphs

=G is a directed graph, G = (V, E)
=edges in E are of several types, representing control and data
dependencies
svertices in V represent assignment statements and predicates
and other special nodes
= Program Slice - Concept introduced by Mark Weiser in 1979
=Argued it was a mental abstraction that programmers used
when debugging
=Program slice S is a reduced, executable program obtained
from P by removing statements from P, such that S replicates
part of the behavior of P
= A slice includes all statements and predicates that might affect
V at point p.
=How can we use the Program Dependency Graph to create
slices?
= A slice corresponds to all nodes that are reachable from a
selected node (forward slice)

UNIVERSITY-OF: MASSACHUSETTS AMHERST 51
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1788 Example

product :=1;
while i<n do
sum := sum +1: T
product := product * i;
i:=i+1;
endwhile;
write sum; Control (flow) dependencies
write product; Data (flow) dependencies

i=i+1

UNIVERSITY:OF MASSACHUSETTS AMHERST

L’“{‘.‘!}{’,}E‘E Program Dependence Graph

\ 4
i: (Eroduct =1

read n;

i=1; ‘\
=0;
;l:cr:juct =1; prod =
A

while i <ndo
sum :=sum +1;
product := product * i;
i=i+1;

endwhile;

write sum;

write product;

—
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Lﬂg‘;{’,}&'{ Dataflow graphs & slices

= Uses
= Data flow coverage criteria for selecting test cases

= coverage criteria exercise subsets of control and data dependencies in
the hope of exposing faults

=debugging:

= which statements could have caused an observed failure?
=maintenance:

= which statements will be affected by a change?

= which statements could affect this statement?

=dependence analysis
= program dependencies provide a theory for restricting/focusing attention
= Problems
=in practice, a program slice is often too big to be useful
=infeasible paths lead to imprecision
=complex data structures lead to imprecision

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

L“!‘.',':{’,}E'E Other Types of Graphs

= A Multigraph MG is an ordered pair MG = (N, C) where N is a set
of nodes {n} and C is a collection of pairs of nodes (edges) with
repetitions allowed (ie. C can be a multiset)

= A Hypergraph HG is an ordered pair HG = (N, T) where N is a set
of nodes {n} and T is a set of t-tuples of nodes, where t > 2.

= A Hypermultigraph is a hypergraph where the set of t-tuples can
be a multiset

= A bipartite graph BG is an ordered pair, BG = {BN, E} where BN is
a node set that is the union of two disjoint subsets, N; UN,, and no
edge in E has both nodes in either N, or N,

= A bipartite graph is often called a 2-colorable graph

= An k-colorable graph is defined analogously, with BN being the
disjoint union of k subsets

UNIVERSITY-OF MASSACHUSETTS AMHERST ++D)
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LIIMPIITEII
)SCIENCE

Types of graphs

=Differences in graphs result from different choices for
nodes & relations

=Hierarchy:
=Models “consists of” or “is a part of”

=Key to divide-and -conquer approaches to
understanding

=Data Flow:

=Nodes represent set of sites where data is
generated/used

*Each edge is a (data generated, data used) node pair
=Control Flow:
=Nodes represent units of functionality

=(n1, n2) is an edge in this graph if and only if unit n2 can
execute immediately after n1 executes

UNIVERSITY.OF MASSACHUSETTS AMHERST % DER

LIIMPIITEII
)SCIENCE

Types of graphs

= Finite State Machines
=Nodes represent all possible different “execution states”

=(s1, s2) is an edge if and only if it is possible for state s2 to
immediately succeed s1. Called a transition from s1 to s2

=Edges annotated with transition condition
= Annotations are relations too
= Juxtaposition of annotation atop what it is annotating
= Petri Nets
=Multiple node and edge types in the same diagram

=\We will come back to this ...

UNIVERSITY-OF: MASSACHUSETTS AMHERST 51
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LQBMPUTEB
)SCIENCE

DATA FLOW DIAGRAMS

= Capture system functionality : What does system do? How?
= Basic components of a data flow diagram:
=Nodes, represented by circles (boxes), are functional units
= Edges, represented by arrows, are data flows between units
=Both augmented by separate annotation relations
= Boxes (sometimes circles), represent I/O data
=This is actually yet another relation

= There is ambiguity and misuse of notation here:
=one circle is a test, others are functions
=are multiple arrows in and out “and” or “or”?

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

LQBMPUTEB
)SCIENCE

Constraints

= Supply Additional Semantics

=Node cannot begin until data arrives along all in-edges

=Or any arrow(?)

=\When node terminates, data passes along all out-edges

= (at most) one (?)
=There must be exactly one Output node
=Clearly an unusual type of DFD

*These constraints support additional types of reasoning,

e.g. about parallelism
= Constraints often specified using first order logic

UNIVERSITY-OF MASSACHUSETTS AMHERST ++D)
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L’“{‘.‘;‘i{’,}&'{ The power of annotation:

= Improper use of notation is not saved by annotation here:

Fn-2.in

Fn-3.in

=“Data Flow” is a family of types of diagrams/relation sets
=Need more formal definitions of DFD’s
=Need more modeling power

=l arge systems (diagrams)?

=Multiple input and output streams?

=\What about data stores?

=Say more about data?

UNIVERSITY OF; MASSACHUSETTS-AMHERST 7+ DE

L’“{‘.‘;‘i{’,}&'{ More Elaborate DFD's

= Hierarchy enables representation of large, complex systems
= bubbles can be "opened up"
= details of a bubble represented by a whole sub-DFD

= constraints on consistency: all arrows ending on/starting from parent bubble
are shown as inputs and outputs on sub-DFD--and that the sub-DFD has no
additional I/O

= Use of logical connectives to add semantics to multiple inputs and outputs
to functions

= sometimes all inputs are needed, sometimes any

= sometimes all outputs are generated, sometimes some

= annotations on edges, indicating logical conditions, can be useful also
= Use of "open boxes" to indicate data stores

LIBRARY
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LPE".;';{’,I.‘,'E Hierarchical DFD

UNIVERSITY OF; MASSACHUSETTS-ANHERST 7+ DEP

L’“{‘.‘;‘;{’,}E‘E Augmenting DFD's

=DFD's focus on functionality, using data as a vehicle
=Data shown as unstructured atomic units--usually unrealistic

=Complex functions cannot be adequately defined without
delving into the details of how they handle structured data

=Sub-DFD's can show how the high level data that high
level DFD's deal with is decomposed

=But this is implicit data definition
= Can be hard to read/inconsistent
= Data specification is worth doing explicitly, carefully
= Usually using Disciplined Natural Language--eg. templates
=Hierarchical relations
=Function(s) creating and using data
=Possible other attributes:
= persistent? where? encoding? ...

UNIVERSITY- OF MASSACHUSETTS AMHERST ~+DEP
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L’“{‘,‘!}{’,}E‘E Juice Plant control system

= Configuration
»two kinds of TANKs
=STORAGE TANKs and COOKING TANKs
=each COOKING TANK is connected to one HEATER
»each HEATER belongs to one COOKING TANK

=BATCH of juice is allocated to one COOKING TANK and
belongs to exactly one RECIPE.

=each RECIPE is related to a JUICE SPECIFICATION
=Why is this a useful example

=Relatively complex

=*Ambiguous

=Can compare with other notations

UNIVERSITY:OF MASSACHUSETTS ANHERST

L’“{‘,‘!}{’,}E‘E Juice Plant control system

ALLOCATION OF BATCH start Operator

TO COOKING TANK batch ID heating~~
ooking tank ID Pie

A

7 A
// batch ID /I
RECIPE OF ramp ID T /
end time e Y heating ,
BATCH \ / s finished’  |data process
K \ 7

Heat : g

-

i -
heater | d Control }-‘
eater L -
HEATER OF N System control process

COOKING TANK

7 \\\*\\\tgm off
turnon "~ \\
current R 4
TEMPERATURE RAMP temperature
Y DATA end temperature
HEATER
data store TEMPERATURE
SENSOR
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OMPUTER

batch ID

end_time_

heater ID reached”
7

end time Monitor

deadline

ramp ID \'\
batch ID ;
cooking tank ID 4
heater ID

end time
end temperature

current o
temperature

UNIVERSITY OF; MASSACHUSETTS-ANHERST 7+ DEP

start

. \

Heat N
Control X turn of
R

= turn on

sseience EIaboration of heat controller

. batch ID
_—.——.—. _heating heating
cooking tank ID - ~. finished
N
ramp ID
end time

heater ID

OMPUTER

Seeience Juice Plant control system

ALLOCATION OF BATCH
TO COOKING TANK

batch ID
:Qoking tank ID

HEATER OF
CCOOKING TANK

RECIPE OF
BATCH

ramp ID
batch ID
cooking tank ID
heater ID
end time
end temperature

Compare
with desired
temperature

TEMPERATURE
SENSOR
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L“{‘.‘,‘i{’,}&'{ Stakeholder Concerns

= Buyer (Juice Company)
= Before development: What should it do?
= How to improve productivity? Quality?
=During development: What will it do?
= \What heat control algorithms to use?
= How to plan for expansion? More cookers, more storage, more recipes. ...
= |s the project on time?
= After development, before delivery: What does it do?
= Does it do what it was intended to do?
= Software developer: How should it be developed?
= What is the system architecture?
= \What sensors, algorithms to use?
= User (plant workers): Does it improve job performance, maintain
job security?
= Safety Inspector: Is it safe?

UNIVERSITY OF MASSACHUSETTS-AMHERST D)

U7 DFD

= Advantages
=See overall system structure
=Reason about what outputs the system will produce
=Powerful aid to intuition and efficiency of communication with
a clear advantages over natural language
= Disadvantages
=Very primitive type of model, as noted it is actually more a
family of model types
=The actual relation(s) are rarely made clear and precise
= How will functionality be achieved
= How fast will this run
= Database locking/consistency management
= Questions DFD’s are adept at answering:
=What results are produced? (What does this do?)
=How might the answers be evolved?

UNIVERSITY-OF MASSACHUSETTS AMHERST ++D)

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

L“{‘,‘-‘;{’,}E‘E Control Flow Diagrams (redux)

=Similar to DFD's except edges represent flow
of control, rather than flow of data
=Usual enhancements:
=annotate edges with predicates

sspecial symbols for branching, concurrency
control....

=Control flow graphs also address questions
like
=“what does this do” and
=*how does this do it”

UNIVERSITY:OF MASSACHUSETTS ANHERST

U8 CFG for juice plant

| input: operator( batch_id) |

db_read: allocation(batch_id, cook_tank_id);
heater(cook_tank _id);
recipe(ramp_id, end_time, end_temp)

none or more : -
han one allocation.batch_id = one
operator.batch_id
recipe.batch_id =
operator.batch_id

!

ramp_control(batch_id, cook_tank_id, ramp_id, end_time, end_temp) |
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negg cro

= Advantages

=Sense of what algorithms to use

=Constraints on data appearing

=that the allocation is maintained in some (e.g. sorted) order

=Can reason about functionality

=Possible to assign batch to more than one heating tank

=Possible a batch has no associated recipe
»Drawbacks:

*What about safety?

*\What about data?

UNIVERSITY:OF MASSACHUSETTS AMHERST D

L“{‘.‘-‘;{’,}E‘E Control vs. Data Flow Views

=Both shed light on similar questions

=One focuses on data evolution, the other on functional
development

=Both are useful, neither removes the need for the other

= Control flow graphs map closely to implementation code
written in procedural languages, e.g., imperative

=Good basis for determining consistency of code with
ideas expressed as data flow

=Data flow graphs focus more on the product itself, seem
better at helping understand if and how it gets evolved,
e.g., declarative

=Seem better adapted to studying earlier formulations of
the problem to be solved, and ways of solving it
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