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Which of  these are best
adapted to providing which
types of answers to which
types of stakeholders?

Which of  these are best
adapted to providing which
types of answers to which
types of stakeholders?

How to write it down?

ßnatural language
ßstructured natural language
ßpictorial notation
ßCharts, Diagrams, Box-and-Arrow Charts
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ßdata models
ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented
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Optative vs. indicative mood

ß Indicative: describes how things in the world are
regardless of the behavior of the system
ß“Each seat is located in one and only one theater.”
ß Optative: describes what you want the system to
achieve
ß“Better seats should be allocated before worse seats at
the same price.”

ßPrinciple of uniform mood
ßIndicative and optative properties should be entirely
separated in a document
ßReduces confusion of both the authors and the readers
ßIncreases chances of finding problems
ßIf the software works right, both sets of properties will
hold as facts
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Mood mixing: example

ß  The lift never goes from the nth to the n+2nd floor without passing
the n+1st floor.
ß  The lift never passes a floor for which the floor selection light inside

the lift is illuminated without stoping at that floor.
ß  If the motor polarity is set to up and the motor switch setting is

changed from off to on, the lift starts to rise within 250 msecs.
ß  If the upwards arrow indicator at a floor is not illuminated when the

lift stops at the floor, it will not leave in the upwards direction. **
ß  The doors are never open at a floor unless the lift is stationary at

that floor. ***
ß  When the lift arrives at a floor, the lift-present sensor at the floor is

set to on.
ß  If an up call button at a floor is pressed when the corresponding

light is off, the light comes on and remains on until the call is
serviced by the lift stopping at that floor and leaving in the upwards
direction.
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•

Natural Language

ßAdvantages
ßEasy to train users
ßClarity is possible (but may be difficult)
ßCompleteness is possible (but by no mean assured)
ßEasily modified
ßIt is the “least common denominator”

ßDisadvantages
ßDetermining consistency between natural language
artifacts and anything else is hard/subjective
ßAmbiguity in natural language is easy and often intentional
ßClear natural language expression is very difficult
ßThe longer the text, the more information, the more the risk of
inconsistency, the harder it is to determine
ß No way of knowing when a specification is "complete"
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Natural Language Summary

ßCannot reason definitively about natural language

ßCannot be sure that natural language artifacts are
consistent with other artifacts

ßAssurances to stakeholders are shaky
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How to write it down?

ßnatural language
ßstructured natural language
ßpictorial notation
ßCharts, Diagrams, Box-and-Arrow Charts
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented
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Structured “Natural” Language

ßDisciplined Use of  Natural Language
ßResponse to natural language problems of:
ßImprecision
ßAmbiguity
ßConsistency (especially when due to size)
ßInability to reason effectively and definitively
ßFamiliar approaches:
ßRestricted use of reserved terms
ßStructuring (paragraph numbering, outline form,
templates, etc.)

ßOther, earlier examples of disciplined use of natural
language:
ßLegal documents
ßRecipes
ßHelp systems
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Declarative vs. Imperative

ßDeclarative specification
ßPre and postcondition pairs, where
ßa precondition is a condition on the input and system state
at the start of executing the function and the postcondition is
a condition on the output and the system state after the
execution of the function.

ßImplementation independent, but under specifies

ßImperative specification
ßdescribe the activities to be performed to get from the
input and initial system state to the output and resulting
system state.
ßLeads to executable specification, but over specifies
by giving an implementation
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Declarative

ACM Computing Surveys, Vol. 30, No. 4, December 1998

But what about state 
of other data?
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Imperative

Implementation 
specific?
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DESCRIPTION:  
this process performs those actions needed to interpret

      time records to produce a pay statement for each hourly 
employee;

KEYWORDS: independent;
ATTRIBUTES ARE:

complexity-level
high;

GENERATES pay-statement, error-listing;
RECEIVES: time-card;
SUBPARTS ARE: hourly-paycheck-validation, hourly-emp-update,

h-report-entry-generates, hourly-paycheck-production;
PART OF:  payroll-processing;
DERIVES:  pay-statement;
USING:  time-card, hourly-employee-record;
DERIVES: hourly-employee-report;
USING:  time-card, hourly-employee-record;
DERIVES: error-listing;
USING: time-card, hourly-employee-record;
PROCEDURE: read record, add up hours, multiply by pay rate…..
HAPPENS: number-of-payments TIMES-PER pay-period;
TRIGGERED BY: hourly-emp-processing-event;
TERMINATION-CAUSES:  new-employee-processing-event;
SECURITY IS: company-only;

PSL (Problem Statement Language)

„1977 IEEE Computer Society Press
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PROCEDURE:
1. compute gross pay from time card data
2. compute tax from gross pay
3. subtract tax from gross pay to obtain net pay
4. update hourly employee record
5. update department record accordingly
6. generate paycheck
Note: if status code indicates that employee did not work 
this pay period, no processing will be done for this employee

PSL (Problem Statement Language)

„1977 IEEE Computer Society Press
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Discipline Mechanisms in PSL

ßUse of keywords (defined elsewhere in specification)
ß fosters precision, clarity
ßhelps support consistency determination:  some
ßkeyword fields have defined relations to others (eg. Input-to and
output-from)

ßUse of templates
ß facilitates  determination of completeness
ß fosters clarity
ß facilitates consistency checking

ßUse of structure:
    HIERARCHY:
ßstandard practice for dealing with size, complexity
ßexploits innate human capacity for abstraction

    DATA FLOW:

    CONTROL FLOW:
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Structured Natural Language

ßbig step in the right direction
ßimprovement over unstructured natural language
ßpossible to determine some kinds of consistency thru:
ßmechanisms for reducing ambiguity
ßmechanisms for fostering completeness
ßstructuring mechanisms for dealing with complexity
ßbut
ßstilted form reduces clarity: less suitable for some key
stakeholder groups
ßsome residual reliance on natural language means
ambiguity remains
ßsize is still a problem:  PSL specs (for example) can be
huge:  consistency determination is long/error prone
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How to write it down?

ßnatural language
ßstructured natural language
ßpictorial notation
ßCharts, Diagrams, Box-and-Arrow Charts
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented
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Various charts

ßFlowcharts

ßStoryboards

ßCause and Effect Diagram
ßPareto Chart
ßHistogram
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Various charts

ßFlowcharts

ßStoryboards

ßCause and Effect Diagram
ßPareto Chart
ßHistogram   … and more

80/20 Rule
• 80% of process defects arise from 20% of

the process issues.
• 80% of delays in schedule arise from 20% of

the possible causes of the delays.
• 80% of customer complaints arise from 20%

of your products or services.
 

©2000-2003 iSixSigma LLC
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Pictorial and Diagrammatic Approaches

ßDiagrams composed of visual elements
ßrigorously defined (definable?) semantics
ßused as modeling devices
ßdepict key structural aspects of system
ßBenefits
ßgreatly improve clarity
ßgreatly improve clarity consistency
ßfacilitate completeness of notation
ßreduce ambiguity
ßbut
ßreduce modifiability, perhaps significantly
ßrestrictions in semantics impede completeness
ßmore on these issues later.....
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How to write it down?

ßnatural language
ßstructured natural language
ßpictorial notation
ßCharts, Diagrams
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented
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Graphs

ßA graph, G = (N, E), is an ordered pair consisting of a node set,

N, and an edge set, E = {(ni, nj)}

ßIf the pairs in E are ordered, then G is called a directed graph,
and is depicted with arrowheads on its edges

ßIf not, the graph is called an undirected graph

ßGraphs provide a mathematical basis for reasoning about s/w

ßGraphs are suggestive devices that help in the visualization
of relations.  The set of edges in the graph are visual
representations of the ordered pairs that compose relations
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Relations:

A relation, R, over a set, S = {st}  is a set of ordered n-tuples
      R = {ri},  where ri = (si,1, si,2, ... , si,n )

A binary relation is a relation where all the tuples are 2-tuples

If (si, sj ) is an element of R, then we often write siR sj

Another view of relations:

The relation, R, over the set S can be defined as:
 R= { (si, .., sj)  | PRED(si, ...,  sj ) = True, for some predicate, PRED}

If the tuples are ordered, the relation is called an ordered relation

If the tuples, <ti,1 , ti,2 , .... ti,n> are unordered, the relation is an
unordered relation
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Relations & graphs

ßBinary relations  (siR sj)can be represented as a graph
ßunordered

ßordered

ßGeneral relations can be represented as multigraphs,
hypergraphs

siR sj

si sj

si sj
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Some Examples

Let I = {all integers},

Define Q= { (x,y,z) | x, y, z  are integers

and y = x**2 , z = x**3 }

Let S = {all states of the U.S., Si},

Define B = { (Si, Sj) | Si and Sj share a border}

Let L = {all statements Li in a program, P},

Define ImmFol = {(Li, Lj) | the execution of Lj may
immediately follow the execution of Li for some
execution of P}
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Flowgraphs

Let S = {all statements si  in a program, P}; and let
ImmFol = { (si, sj) | The execution of sj immediately
follows the execution of si for some execution of P }

Then FG = (S, ImmFol) is called the flowgraph of P
ßFG is an ordered graph
ßEvery execution sequence (ie. the sequence in which
the statements of P are executed for a given execution
of P) corresponds to a path in FG.
ßHowever, the converse is not true.  A path through FG
may not correspond to an execution sequence for P
ßA loop in P appears as a cycle in FG

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z  := 10 Z := 20 

X := Y + Z

2 3

4

5 6

7

Y := X / 2

X < = 0

X < =  0, Y = 5

X > 0

X > 0, Y > 0
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Some Properties of Relations

ßSome familiar properties of ordered binary relations, R, over
the set S={sk}:
ßSymmetry:  si R sj  ==>  sj R si  for all pairs, si and sj in S

ßReflexivity:    s R s, for all s in S

ßTransitivity:  si R sj  and sj R sk ==>  si R sk, for all si, sj and sk

in S

ßA relation that is symmetric, reflexive and transitive is called
an equivalence relation

ßIf R = {(si, sj)} is transitive, then C={(sa, sb)| there exists a 
sequence,  i1, i2, ..., in, such that sa=si1 R si2, si2 R si3, ....

sin-1 R sin = sb } is called the transitive closure of R
ßAntisymmetry:  si R sj ==> ~(sj R si) for all pairs, si and sj in S

ßIrreflexivity: s ~R s for all s in S
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Examples

If S={all subroutines written in Fortran}  s1 R s2 if and only if s1
calls s2, then R is an irreflexive relation

Let PS ={ce, all the statements in a program that consists of
               a set of modules, M={mt} },
               INMOD = { (ce, cf) | ce and cf appear in

the same module mt }
               INMOD is an equivalence relation

The relation ImmFol (earlier slide) is not transitive

Change ImmFol  to Fol, by defining Fol = { (L1, L2) |  the
execution of L2 may follow the execution of L1 for
some execution of P} Fol is still not transitive
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Paths

A path, P, through an ordered  graph G=(N ,E) is a sequence
of edges, ( <n i,1, n j,1 >,  <n i,2, n j,2 >,  ... , <n i,t, n j,t > ) such
that  n j,k-1 = n i,k  for all 2 ≤ k ≤ n

A path, UP, through an unordered graph UG=(N,U)  is a
sequence of edges, ( <n i,1, n j,1 >,  <n i,2, n j,2 >, ... , <n i,t, n j,t
> ) such that all of the <n i,z , n j,z> can be ordered to assure
that n j,z-1 = n i,z for all 2 ≤ k ≤ n
In either  case, n i,1  is called the start node and n j,t is called the
end node.

The length of a path is the number of  edges in the path
A graph G is connected if and only if, for every pair of nodes,

n1, n2, there is path from one of them to the other with G
considered to be an unordered graph.
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Paths

ßa path, P, through a directed graph
G = (N, E) is a sequence of edges,
( (ni,1, nj,1 ),  (ni,2, nj,2 ), ... , (ni,t, nj,t ))
       such that nj,k-1 = ni,k  for all 2≤ k ≤t
ßni,1 is called the start node and nj,t is called the end node

ßthe length of a path is the number of edges in the path

ßpaths are also frequently represented by a sequence of
nodes (ni,1, ni,2, ni,3, …, ni,t)
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Cycles

ßa cycle in a graph G is a path whose start node and end
node are the same

ßa simple cycle in a graph G is a cycle such that all of its
nodes are different (except for the start and end nodes)

ßif a graph G has no path through it that is a cycle, then
the graph is called acyclic
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Examples

1

3

5

2

4

Cycle:1,3,2,4,3,1

Simple cycle:1,2,3,1
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Trees

ßA cycle in a graph G is a path whose start node and end
node are the same

ßA simple cycle in a graph G is a cycle such that all of its
nodes are different (except for the start and end nodes)

ß If a graph G is connected and has no path through it that is a
cycle, then the graph is called acyclic.

ßAn acyclic unordered graph is called a tree
ßIf the unordered version of an ordered graph is acyclic, the
graph is called a directed tree

ßA collection of trees is called a forest

ß If the unordered version of an ordered graph has cycles, but
the ordered graph itself has no cycles, then the graph is
called a Directed Acyclic Graph (DAG)
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Trees

ßan acyclic, undirected graph is called a tree

ßif the undirected version of a directed graph is acyclic,
then the graph is called a directed tree

ßif the undirected version of a directed graph has cycles,
but the directed graph itself has no cycles, then the
graph is called a Directed Acyclic Graph (DAG)
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Examples

tree
directed tree

cyclic undirected
graph

directed acyclic
graph (DAG)
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Abstract Syntax Tree (AST)

ßa common form for representing expressions
ßexecutable statements are expressions

ßprograms are expressions, where the operator is
execute and the operands are the statements

ß2 kinds of nodes: operator and operands
ßoperator applied to N operands

ßAn abstract syntax graph G = ( N1, N2, E ) where N1
are nodes that represent operators in the language, N2
are nodes that represent identifiers or literals , and E
represents is "applied to"
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:=

X

A

+

5

X:= A + 5;

Abstract Syntax Tree
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Abstract Syntax Trees

ßhave many advantages
ßprovide a visual display of the body of an object
ßbody of an assignment, addition, while, etc.

ßsupports incremental modification
ßincremental syntactic or semantic analysis

ßbasis for structural editing
ßuser is provided with a template and fills in the slots

ßcan assure syntactic consistency

ßneed to control granularity of consistency checking
ße.g., keystroke, semi-colon, user-request

ßused to create other graph models
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computation tree

ßmodels all the possible executions of a system

ßat each node, shows the state (value) of each variable

ßeffectively infinite number of paths

ßsome paths may be effectively infinite
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example computation tree

total, value, count, maximum : pos int;

read maximum;

total := 0;

count := 1;

while (count <= maximum) do

total := total + value;

count: = count + 1;

read value;

endwhile;

print total;

<total, value, count, maximum>

<0,J,1,2>

<0,J,1,J>

<0,J,1,1> <0,J,1,max pos>...

<0,1,1,2> <0, max pos,1,2>...

<1,1,1,2>

...

<0,J,J,J>
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Computation Trees

ßhave advantages
ßrepresent the space that we want to reason about

ßfor anything interesting they are too large to create or
reason about

ßother models of executable behavior are providing
abstractions of the computation tree model
ßabstract values

ßabstract flow of control

ßspecialize abstraction depending on focus of analysis
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Callgraphs

ßLet PROC = {procedures Si  comprising a program P}
and CALLS = {(Si, Sj) | Sj is directly invoked from Si

during some execution of P}, then CG = (PROC, CALLS)
is called the Call Graph of P

ßCG is
ßa directed graph

ßdoes not represent the order entities are invoked

ßdoes not represent the number of times an entity is invoked

ßa cycle in g indicates that the nodes along the cycle
syntactically participate in a recursive calling chain

ßif P is written in a language that does not allow recursion,
then CG will be acyclic

ßprovides a framework for inter-component analysis
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Call Graph Example

a

b c d

e f g
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Control Flow Graph (CFG)

ßrepresents the flow of executable behavior

ßG = (N, E, S, T) where
ßthe nodes N represent executable instructions
(statement or statement fragments);

ßthe edges E represent the potential transfer of
control;

ßS is a designated start node;

ßT is a designated final node

ßE = { (ni, nj) | syntactically, the execution of nj
follows the execution of ni}



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 23

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Control Flow Graph (CFG)

ßnodes may correspond to single statements, parts of
statements, or several statements

ßexecution of a node means that the instructions
associated with a node are executed in order from the
first instruction to the last

ßnodes are 1-in, 1-out
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read n

i := 1

product  := 1

sum := 0

while i ≤ n 

write prod 

write sum 

sum := 

i:=i+1 

prod := 

Control Flow Graph Model

read n;

i := 1;

sum := 0;

product  := 1;

while i ≤ n do

    sum := sum +1;

    product := product * i;

    i:= i+1;

endwhile;

write sum;

write product;
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Reducing the CFG

ßbasic blocks are nodes that
contain sequential
execution

ßCan reduce the number of
nodes in the CFG, but may
add more complications to
the analysis

read n

i := 1

product  := 1

sum := 0

while i ≤ n 

write prod 

write sum 

sum := 

i:=i+1 

prod := 
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Benefits of CFG

ßprobably the most commonly used representation
ßnumerous variants

ßbasis for inter-component analysis
ßcollections of CFGs

ßbasis for various transformations
ßcompiler optimizations

ßS/W analysis

ßbasis for automated analysis
ßgraphical representations of interesting programs are
too complex for direct human understanding
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Some dataflow relations

ßDataFlow(i, j) if node i creates data that node j uses

ß Input(n)  if n is a node that supplies initial input data

ßOutput(n) if n is a node that transmits data to end users

ßEdgeAnnotation(e, text) if the string text describes the data
that flows along edge e

ßNodeAnnotation(n, text) if the string text describes the
functioning of node n

ßQuestions this helps answer:
ßWhy create this data?  Who uses this data?  What results
does the end user see?  What does the end user have to
input?

ßQuestions this can’t answer:  What is the exact sequence of
events? How does a node do its job?
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Program Dependence Graphs

ßG is a directed graph, G = (V, E)
ßedges in E are of several types, representing control and data
dependencies
ßvertices in V represent assignment statements and predicates
and other special nodes

ßProgram Slice - Concept introduced by Mark Weiser in 1979
ßArgued it was a mental abstraction that programmers used
when debugging
ßProgram slice S is a reduced, executable program obtained
from P by removing statements from P, such that S replicates
part of the behavior of P
ßA slice includes all statements and predicates that might affect
V at point p.

ßHow can we use the Program Dependency Graph to create
slices?
ßA slice corresponds to all nodes that are reachable from a
selected node (forward slice)
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Example
entry

read n i := 1 product  := 1sum := 0 while i ≤ n write prod write sum 

sum := i := i+1 prod := 

read n;
i := 1;
sum := 0;
product  := 1;
while i ≤ n do
    sum := sum +1;
    product := product * i;
    i:= i+1;
endwhile;
write sum;
write product;

Control (flow) dependencies
Data (flow) dependencies
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Program Dependence Graph
entry

read n i := 1 product  := 1sum := 0 while i ≤ n write prod write sum 

sum := i:=i + 1prod := 

read n;
i := 1;
sum := 0;
product  := 1;
while i ≤ n do

sum := sum +1;
product := product * i;
i:= i+1;

endwhile;
write sum;
write product;
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Dataflow graphs & slices

ßUses
ßData flow coverage criteria for selecting test cases
ß coverage criteria  exercise  subsets of control and data dependencies in

the hope of exposing faults

ßdebugging:
ßwhich statements could have caused an observed failure?

ßmaintenance:
ßwhich statements will be affected by a change?
ßwhich statements could affect this statement?

ßdependence analysis
ß program dependencies provide a theory for restricting/focusing attention

ßProblems
ß in practice, a program slice is often too big to be useful
ß infeasible paths lead to imprecision
ßcomplex data structures lead to imprecision
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Other Types of Graphs

ßA Multigraph MG is an ordered pair MG = (N, C) where N is a set
of nodes {ni} and  C is a collection of pairs of nodes (edges) with
repetitions allowed (ie. C can be a multiset)

ßA Hypergraph HG is an ordered pair HG = (N, T) where N is a set
of nodes {ni} and T is a set of t-tuples of nodes, where t > 2.

ßA Hypermultigraph is a hypergraph where the set of t-tuples can
be a multiset

ßA bipartite graph BG is an ordered pair, BG = {BN, E} where BN is
a node set that is the union of two disjoint subsets, N1 U N2,  and no
edge in E has both nodes in either N1 or N2

ßA bipartite graph is often called a 2-colorable graph

ßAn k-colorable graph is defined analogously, with BN being the
disjoint union of k subsets
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Types of graphs

ßDifferences in graphs result from different choices for
nodes & relations
ßHierarchy:
ßModels  “consists of” or “is a part of”
ßKey to divide-and -conquer approaches to
understanding

ßData Flow:
ßNodes represent set of sites where data is
generated/used
ßEach edge is a  (data generated, data used)  node pair
ßControl Flow:
ßNodes represent units of functionality
ß(n1, n2) is an edge in this graph if and only if unit n2 can
execute immediately after n1 executes
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Types of graphs

ßFinite State Machines
ßNodes represent all possible different “execution states”
ß(s1, s2) is an edge if and only if it is possible for state s2 to
immediately succeed s1.  Called a  transition from s1 to s2
ßEdges annotated with transition condition
ßAnnotations are relations too

ßJuxtaposition of annotation atop what it is annotating
ßPetri Nets
ßMultiple node and edge types in the same diagram

ßWe will come back to this …
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DATA FLOW DIAGRAMS

ßCapture system functionality :  What does system do?  How?
ßBasic components of a data flow diagram:
ßNodes, represented by circles (boxes), are functional units
ßEdges, represented by arrows, are data flows between units
ßBoth augmented by separate annotation relations

ßBoxes (sometimes circles), represent I/O data
ßThis is actually yet another relation

ßThere is ambiguity and misuse of notation here:
ßone circle is a test, others are functions
ßare multiple arrows in and out “and” or “or”?

check 
arg.

values

input
height

print
area

compute
  area

args
OK area

input
width

height

width
output
error
msg.

args
bad

print
error
msg

error
msg
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Constraints

ßSupply Additional Semantics
ßNode cannot begin until data arrives along all in-edges
ßOr any arrow(?)

ßWhen node terminates, data passes along all out-edges
ß(at most) one (?)

ßThere must be exactly one Output node
ßClearly an unusual type of DFD

ßThese constraints support additional types of reasoning,
e.g. about parallelism

ßConstraints often specified using first order logic
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The power of annotation:

ß Improper use of notation is not saved by annotation here:

ß “Data Flow” is a family of types of diagrams/relation sets
ßNeed more formal definitions of DFD’s
ßNeed more modeling power
ßLarge systems (diagrams)?
ßMultiple input and output streams?
ßWhat about data stores?
ßSay more about data?

Fn-1

Input 1
printFn-2Fn-2.in

Out-1

Input 2

Arg-1

Arg-2

Fn-3Fn-3.in print
Out-2
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More Elaborate DFD's
ß Hierarchy enables representation of large, complex systems
ß bubbles can be "opened up"

ß details of a bubble represented by a whole sub-DFD

ß constraints on consistency: all arrows ending on/starting from parent bubble
are shown as inputs and outputs on sub-DFD--and that the sub-DFD has no
additional I/O

ß Use of logical connectives to add semantics to multiple inputs and outputs
to functions
ß sometimes all inputs are needed, sometimes any

ß sometimes all outputs are generated, sometimes some

ß annotations on edges, indicating logical conditions, can be useful also

ß Use of  "open boxes" to indicate data stores

LIBRARY

Buy
new

books

new 
books book Borrow

 a
 book
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Hierarchical DFD

Check
args.

height

width

args
OK

args  
not OK

height

width

args
OK
args  

not OK
Check args.

height
>0width

 >0

height
> width

valid
width
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height

nono

no
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Augmenting DFD's

ßDFD's focus on functionality, using data as a vehicle
ßData shown as unstructured atomic units--usually unrealistic

ßComplex functions cannot be adequately defined without
delving into the details of how they handle structured data

ßSub-DFD's can show how the high level data that high
level DFD's deal with is decomposed

ßBut this is implicit data definition
ßCan be hard to read/inconsistent

ßData specification is worth doing explicitly, carefully

ßUsually using Disciplined Natural Language--eg. templates
ßHierarchical relations

ßFunction(s) creating and using data

ßPossible other attributes:
ßpersistent?  where?  encoding? ...
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Juice Plant control system

ßConfiguration
ßtwo kinds of TANKs
ßSTORAGE TANKs and COOKING TANKs

ßeach COOKING TANK is connected to one HEATER

ßeach HEATER belongs to one COOKING TANK

ßBATCH of juice is allocated to one COOKING TANK and
belongs to exactly one RECIPE.

ßeach RECIPE is related to a JUICE SPECIFICATION

ßWhy is this a useful example
ßRelatively complex

ßAmbiguous

ßCan compare with other notations
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Juice Plant control system

OperatorALLOCATION OF BATCH
TO COOKING TANK

HEATER OF
COOKING TANK

RECIPE OF
BATCH

TEMPERATURE RAMP
DATA

TEMPERATURE
SENSOR

HEATER

ramp ID
batch ID
cooking tank ID
heater ID
end time
end temperature

heater ID

turn off

turn on

batch ID

start
heating

ramp ID 
end time heating

finished

batch ID
cooking tank ID

current
temperature

Heat
Control
System

data store

data process

control process
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Elaboration of heat controller

current
temperature

Compare 
with desired
temperature

Monitor
deadline

Control
temperature

ramp

Turn on
heater

Turn off
heater

Start
temperature

ramp

heater ID

turn of

turn on

end_time_
reached

E/D

desired  temp
not reached

desired  temp
reached

T

ramp ID 
end time

heater ID

batch ID
cooking tank ID

end time 

T

T

current
temperature

batch IDstart
heating heating

finished

ramp ID
batch ID
cooking tank ID
heater ID
end time
end temperature

Heat
Control
System
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Juice Plant control system
OperatorALLOCATION OF BATCH

TO COOKING TANK

HEATER OF
COOKING TANK

RECIPE OF
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* TEMPERATURE RAMP
DATA

TEMPERATURE
SENSOR

HEATER

Compare 
with desired
temperature

Monitor
deadline

Control
temperature

ramp

Turn on
heater

Turn off
heater

Start
temperature

ramp
* TEMPERATURE RAMP

DATA

ramp ID
batch ID
cooking tank ID
heater ID
end time
end temperature

heater IDheater ID

turn of

turn on

end_time_
reached

E/D

turn o

batch ID
start

heating

cooking tank ID
end temperature

end time

heating
finished

desired  temp
not reached

desired  temp
reached

T

heater ID

batch ID
cooking tank ID



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 34

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Stakeholder Concerns

ßBuyer (Juice Company)
ßBefore development: What should it do?
ßHow to improve productivity? Quality?

ßDuring  development:  What will it do?
ßWhat heat control algorithms to use?

ßHow to plan for expansion? More cookers, more storage, more recipes. …

ß Is the project on time?

ßAfter development, before delivery:  What does it do?
ßDoes it do what it was intended to do?

ßSoftware developer: How should it be developed?
ßWhat is the system architecture?

ßWhat sensors, algorithms to use?

ßUser (plant workers):  Does it improve job performance, maintain
job security?
ßSafety Inspector:  Is it safe?
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DFD

ßAdvantages
ßSee overall system structure
ßReason about what outputs the system will produce
ßPowerful aid to intuition and efficiency of communication with
a clear advantages over natural language

ßDisadvantages
ßVery primitive type of model, as noted it is actually more a
family of model types
ßThe actual relation(s) are rarely made clear and precise
ßHow will functionality be achieved
ßHow fast will this run
ßDatabase locking/consistency management

ßQuestions DFD’s are adept at answering:
ßWhat results are produced? (What does this do?)
ßHow might the answers be evolved?
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Control Flow Diagrams (redux)

ßSimilar to DFD's except edges represent flow
of control, rather than flow of data

ßUsual enhancements:
ßannotate edges with predicates

ßspecial symbols for branching, concurrency
control....

ßControl flow graphs also address questions
like
ß“what does this do”   and

ß“how does this do it”
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CFG for juice plant

input: operator( batch_id)

allocation.batch_id = 
operator.batch_id 

db_read: allocation(batch_id, cook_tank_id);
heater(cook_tank_id);
recipe(ramp_id, end_time, end_temp)

none or more
than one

ramp_control(batch_id, cook_tank_id, ramp_id, end_time, end_temp)

recipe.batch_id =
operator.batch_id

error

none

one

yes



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 36

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

CFG

ßAdvantages
ßSense of what algorithms to use

ßConstraints on data appearing
ßthat the allocation is maintained in some (e.g. sorted) order

ßCan reason about functionality
ßPossible to assign batch to more than one heating tank

ßPossible a batch has no associated recipe

ßDrawbacks:
ßWhat about safety?

ßWhat about data?
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Control vs. Data Flow Views

ßBoth shed light on similar questions

ßOne focuses on data evolution, the other on functional
development

ßBoth are useful, neither removes the need for the other

ßControl flow graphs map closely to implementation code
written in procedural languages, e.g., imperative
ßGood basis for determining consistency of code with
ideas expressed as data flow

ßData flow graphs focus more on the product itself, seem
better at helping understand if and how it gets evolved,
e.g., declarative
ßSeem better adapted to studying earlier formulations of
the problem to be solved, and ways of solving it


