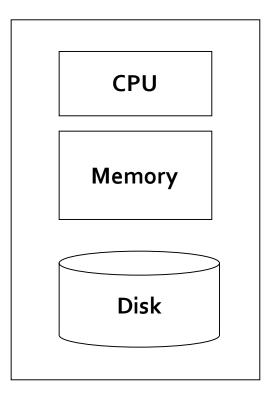
### Map Reduce

David Wemhoener

Acknowledgement: Majority of the slides are taken from Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman

### Single Node Architecture



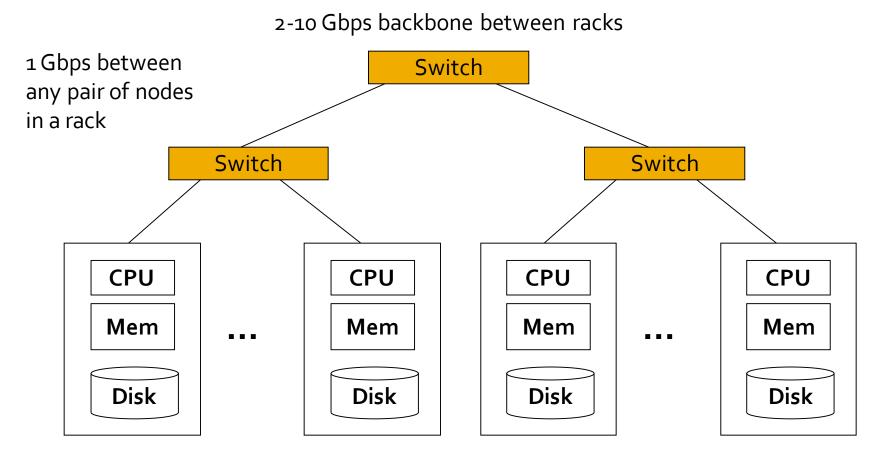
#### Machine Learning, Statistics

"Classical" Data Mining

# **Motivation: Google Example**

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
  - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!
- Today, a standard architecture for such problems is emerging:
  - Cluster of commodity Linux nodes
  - Commodity network (ethernet) to connect them

### **Cluster Architecture**



Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO



# Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
  - How do you distribute computation?
  - How can we make it easy to write distributed programs?
  - Machines fail:
    - One server may stay up 3 years (1,000 days)
    - If you have 1,000 servers, expect to loose 1/day
    - People estimated Google had ~1M machines in 2011
      - 1,000 machines fail every day!

# **Idea and Solution**

Issue: Copying data over a network takes time
Idea:

- Bring computation close to the data
- Store files multiple times for reliability
- Map-reduce addresses these problems
  - Google's computational/data manipulation model
  - Elegant way to work with big data
  - Storage Infrastructure File system
    - Google: GFS. Hadoop: HDFS
  - Programming model
    - Map-Reduce

J. Les kovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

### Storage Infrastructure

### Problem:

If nodes fail, how to store data persistently?

#### Answer:

- Distributed File System:
  - Provides global file namespace
  - Google GFS; Hadoop HDFS;

### Typical usage pattern

- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common

# **Distributed File System**

#### Chunk servers

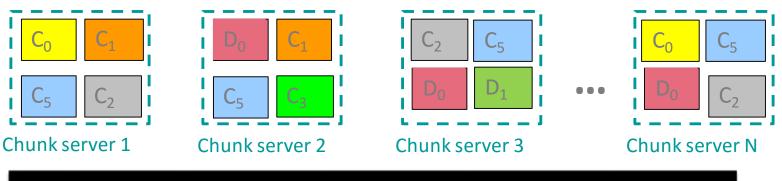
- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

#### Master node

- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated
- Client library for file access
  - Talks to master to find chunk servers
  - Connects directly to chunk servers to access data

# **Distributed File System**

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
  - Seamless recovery from disk or machine failure



Bring computation directly to the data!

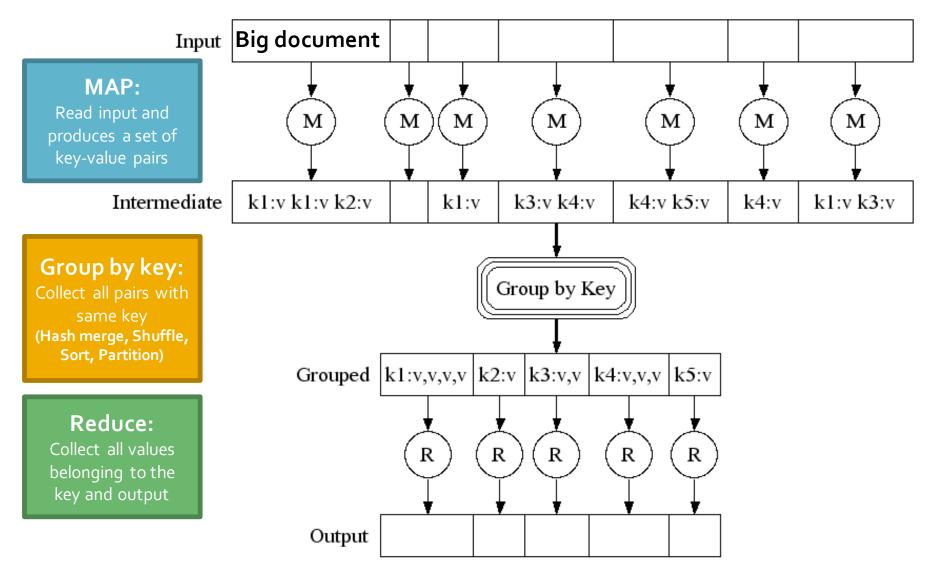
#### Chunk servers also serve as compute servers

## Map-Reduce: Environment

### Map-Reduce environment takes care of:

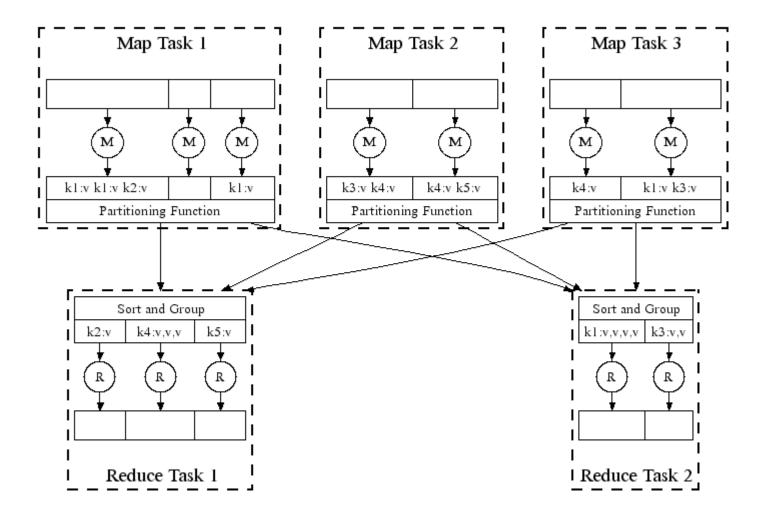
- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

# Map-Reduce: A diagram



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

### Map-Reduce: In Parallel

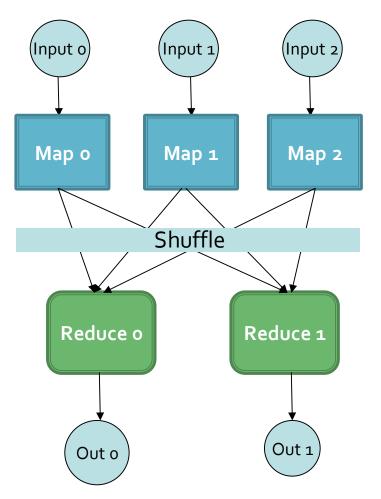


#### All phases are distributed with many tasks doing the work

# Map-Reduce

#### Programmer specifies:

- Map and Reduce and input files
- Workflow:
  - Read inputs as a set of key-valuepairs
  - Map transforms input kv-pairs into a new set of k'v'-pairs
  - Sorts & Shuffles the k'v'-pairs to output nodes
  - All k'v'-pairs with a given k' are sent to the same reduce
  - Reduce processes all k'v'-pairs grouped by key into new k''v''-pairs
  - Write the resulting pairs to files
- All phases are distributed with many tasks doing the work



### Data Flow

- Input and final output are stored on a distributed file system (FS):
  - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

## **Coordination: Master**

#### Master node takes care of coordination:

- Task status: (idle, in-progress, completed)
- Idle tasks get scheduled as workers become available
- When a map task completes, it sends the master the location and sizes of its *R* intermediate files, one for each reducer
- Master pushes this info to reducers
- Master pings workers periodically to detect failures

# **Dealing with Failures**

#### Map worker failure

- Map tasks completed or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker

### Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted

#### Master failure

MapReduce task is aborted and client is notified

# How many Map and Reduce jobs?

- M map tasks, R reduce tasks
- Rule of a thumb:
  - Make M much larger than the number of nodes in the cluster
  - One DFS chunk per map is common
  - Improves dynamic load balancing and speeds up recovery from worker failures
- Usually R is smaller than M
  - Because output is spread across R files

# **Refinements: Backup Tasks**

### Problem

- Slow workers significantly lengthen the job completion time:
  - Other jobs on the machine
  - Bad disks
  - Weird things

#### Solution

- Near end of phase, spawn backup copies of tasks
  - Whichever one finishes first "wins"
- Effect
  - Dramatically shortens job completion time

## **Refinement: Combiners**

- Often a Map task will produce many pairs of the form (k,v<sub>1</sub>), (k,v<sub>2</sub>), ... for the same key k
  - E.g., popular words in the word count example

Map Task 1

Partitioning Function

Sort and Group

k4:v.v.v

Reduce Task 1

1.5

M

Map Task 2

Partitioning Function

k4:v k5:

k3:v k4:v

- Can save network time by pre-aggregating values in the mapper:
  - combine(k, list(v<sub>1</sub>))  $\rightarrow$  v<sub>2</sub>
  - Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative

Map Task 3

Partitioning Function

Sort and Group

I Reduce Task 2

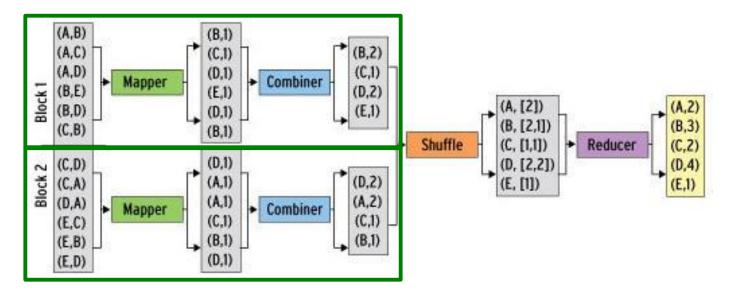
k4:v

M

### **Refinement: Combiners**

#### Back to our word counting example:

Combiner combines the values of all keys of a single mapper (single machine):



Much less data needs to be copied and shuffled!

# **Refinement: Partition Function**

### Want to control how keys get partitioned

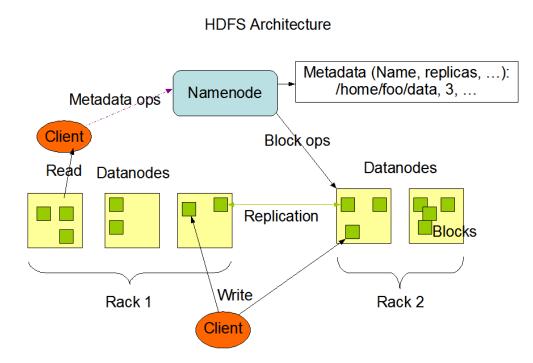
- Inputs to map tasks are created by contiguous splits of input file
- Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
   hash(key) mod R
- Sometimes useful to override the hash function:
  - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

# Hadoop

- Open source project managed by the Apache Software Foundation
- Current Framework includes:
  - Implementation of MapReduce
  - YARN
  - Hadoop Distributed File System (HDFS)
  - Hadoop Commons
- Users include Amazon, Facebook, and Ebay<sup>1</sup>

1: https://wiki.apache.org/Hadoop/PoweredBy

## **Hadoop Distributed File System**



https://hadoop.apache.org/docs/r1.2.1/hdfs\_design.html

# Pig

- High-level scripting platform
- Provides an abstraction from MapReduce

input\_lines = LOAD '/tmp/word.txt' AS (line:chararray); words = FOREACH input\_lines GENERATE FLATTEN(TOKENIZE(line)) AS word; filtered\_words = FILTER words BY word MATCHES '\\w+'; word groups = GROUP filtered\_words BY word;

word\_count = FOREACH word\_groups GENERATE COUNT(filtered\_words) AS
count, group AS word;

ordered\_word\_count = ORDER word\_count BY count DESC;

STORE ordered\_word\_count INTO '/tmp/results.txt';

### Hive

- Data warehouse software
- SQL-like interface (Hive-QL)
- Specify what not how!

# Example: Join By Map-Reduce

- Compute the natural join R(A,B) ⋈ S(B,C)
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

| Α              | B              |           | В              | С                     |   | Α              | С              |
|----------------|----------------|-----------|----------------|-----------------------|---|----------------|----------------|
| a <sub>1</sub> | b <sub>1</sub> | $\bowtie$ | b <sub>2</sub> | C <sub>1</sub>        | = | a <sub>3</sub> | C <sub>1</sub> |
| a <sub>2</sub> | b <sub>1</sub> |           | b <sub>2</sub> | C <sub>2</sub>        |   | a <sub>3</sub> | C <sub>2</sub> |
| a <sub>3</sub> | b <sub>2</sub> |           | b <sub>3</sub> | <b>C</b> <sub>3</sub> |   | a <sub>4</sub> | C <sub>3</sub> |
| a <sub>4</sub> | b <sub>3</sub> |           |                |                       |   |                |                |
|                |                |           | ÷              | 5                     |   |                |                |

R