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 20+ billion web pages x 20KB = 400+ TB
 1 computer reads 30-35 MB/sec from disk

▪ ~4 months to read the web

 ~1,000 hard drives to store the web
 Takes even more to do something useful 

with the data!
 Today, a standard architecture for such 

problems is emerging:

▪ Cluster of commodity Linux nodes

▪ Commodity network (ethernet) to connect them
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Switch1 Gbps between 
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO
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 Large-scale computing for data mining 
problems on commodity hardware

 Challenges:

▪ How do you distribute computation?

▪ How can we make it easy to write distributed 
programs?

▪ Machines fail:

▪ One server may stay up 3 years (1,000 days)

▪ If you have 1,000 servers, expect to loose 1/day

▪ People estimated Google had ~1M machines in 2011
▪ 1,000 machines fail every day!
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 Issue: Copying data over a network takes time
 Idea:

▪ Bring computation close to the data

▪ Store files multiple times for reliability

 Map-reduce addresses these problems

▪ Google’s computational/data manipulation model

▪ Elegant way to work with big data

▪ Storage Infrastructure – File system

▪ Google: GFS. Hadoop: HDFS

▪ Programming model

▪ Map-Reduce
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 Problem:

▪ If nodes fail, how to store data persistently? 

 Answer:

▪ Distributed File System:

▪ Provides global file namespace

▪ Google GFS; Hadoop HDFS;

 Typical usage pattern

▪ Huge files (100s of GB to TB)

▪ Data is rarely updated in place

▪ Reads and appends are common
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 Chunk servers
▪ File is split into contiguous chunks
▪ Typically each chunk is 16-64MB
▪ Each chunk replicated (usually 2x or 3x)
▪ Try to keep replicas in different racks

 Master node
▪ a.k.a. Name Node in Hadoop’s HDFS
▪ Stores metadata about where files are stored
▪ Might be replicated

 Client library for file access
▪ Talks to master to find chunk servers 
▪ Connects directly to chunk servers to access data
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 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines 

▪ Seamless recovery from disk or machine failure
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Chunk servers also serve as compute servers



Map-Reduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a 

set of machines
 Performing the group by key step
 Handling machine failures
 Managing required inter-machine 

communication
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Big document

MAP:
Read input and 

produces a set of 
key-value pairs

Group by key:
Collect all pairs with 

same key
(Hash merge, Shuffle, 

Sort, Partition)

Reduce:
Collect all values 

belonging to the 
key and output
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All phases are distributed with many tasks doing the work



 Programmer specifies:
▪ Map and Reduce and input files

 Workflow:
▪ Read inputs as a set of key-value-

pairs
▪ Map transforms input kv-pairs into a 

new set of k'v'-pairs
▪ Sorts & Shuffles the k'v'-pairs to 

output nodes
▪ All k’v’-pairs with a given k’ are sent 

to the same reduce
▪ Reduce processes all k'v'-pairs 

grouped by key into new k''v''-pairs
▪ Write the resulting pairs to files

 All phases are distributed with 
many tasks doing the work
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Map 1
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Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle
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 Input and final output are stored on a
distributed file system (FS):

▪ Scheduler tries to schedule map tasks “close” to 
physical storage location of input data

 Intermediate results are stored on local FS
of Map and Reduce workers

 Output is often input to another 
MapReduce task
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 Master node takes care of coordination:

▪ Task status: (idle, in-progress, completed)

▪ Idle tasks get scheduled as workers become 
available

▪ When a map task completes, it sends the master 
the location and sizes of its R intermediate files, 
one for each reducer

▪ Master pushes this info to reducers

 Master pings workers periodically to detect 
failures
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 Map worker failure

▪ Map tasks completed or in-progress at 
worker are reset to idle

▪ Reduce workers are notified when task is 
rescheduled on another worker

 Reduce worker failure

▪ Only in-progress tasks are reset to idle 

▪ Reduce task is restarted

 Master failure

▪ MapReduce task is aborted and client is notified
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 M map tasks, R reduce tasks
 Rule of a thumb:

▪ Make M much larger than the number of nodes 
in the cluster

▪ One DFS chunk per map is common

▪ Improves dynamic load balancing and speeds up 
recovery from worker failures

 Usually R is smaller than M

▪ Because output is spread across R files
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 Problem
▪ Slow workers significantly lengthen the job 

completion time:
▪ Other jobs on the machine

▪ Bad disks

▪ Weird things

 Solution
▪ Near end of phase, spawn backup copies of tasks
▪ Whichever one finishes first “wins”

 Effect
▪ Dramatically shortens job completion time
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 Often a Map task will produce many pairs of 
the form (k,v1), (k,v2), … for the same key k
▪ E.g., popular words in the word count example

 Can save network time by 
pre-aggregating values in 
the mapper:
▪ combine(k, list(v1))  v2

▪ Combiner is usually same 
as the reduce function

 Works only if reduce 
function is commutative and associative
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 Back to our word counting example:

▪ Combiner combines the values of all keys of a 
single mapper (single machine):

▪ Much less data needs to be copied and shuffled!
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 Want to control how keys get partitioned
▪ Inputs to map tasks are created by contiguous 

splits of input file

▪ Reduce needs to ensure that records with the 
same intermediate key end up at the same worker

 System uses a default partition function:
▪ hash(key) mod R

 Sometimes useful to override the hash 
function:
▪ E.g., hash(hostname(URL)) mod R ensures URLs 

from a host end up in the same output file
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 Open source project managed by the Apache 
Software Foundation

 Current Framework includes:

▪ Implementation of MapReduce

▪ YARN

▪ Hadoop Distributed File System (HDFS)

▪ Hadoop Commons

 Users include Amazon, Facebook, and Ebay1
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1: https://wiki.apache.org/Hadoop/PoweredBy
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https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html



 High-level scripting platform
 Provides an abstraction from MapReduce

input_lines = LOAD '/tmp/word.txt' AS (line:chararray);
words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;
filtered_words = FILTER words BY word MATCHES '\\w+';
word_groups = GROUP filtered_words BY word;
word_count = FOREACH word_groups GENERATE COUNT(filtered_words) AS 
count, group AS word;
ordered_word_count = ORDER word_count BY count DESC;
STORE ordered_word_count INTO '/tmp/results.txt';
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 Data warehouse software
 SQL-like interface (Hive-QL)
 Specify what not how!
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 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)
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