
Map Reduce

David Wemhoener

Acknowledgement: Majority of the slides are taken from Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman



Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 2



 20+ billion web pages x 20KB = 400+ TB
 1 computer reads 30-35 MB/sec from disk

▪ ~4 months to read the web

 ~1,000 hard drives to store the web
 Takes even more to do something useful 

with the data!
 Today, a standard architecture for such 

problems is emerging:

▪ Cluster of commodity Linux nodes

▪ Commodity network (ethernet) to connect them

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 3



Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between 
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 4

http://bit.ly/Shh0RO


J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5



 Large-scale computing for data mining 
problems on commodity hardware

 Challenges:

▪ How do you distribute computation?

▪ How can we make it easy to write distributed 
programs?

▪ Machines fail:

▪ One server may stay up 3 years (1,000 days)

▪ If you have 1,000 servers, expect to loose 1/day

▪ People estimated Google had ~1M machines in 2011
▪ 1,000 machines fail every day!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6



 Issue: Copying data over a network takes time
 Idea:

▪ Bring computation close to the data

▪ Store files multiple times for reliability

 Map-reduce addresses these problems

▪ Google’s computational/data manipulation model

▪ Elegant way to work with big data

▪ Storage Infrastructure – File system

▪ Google: GFS. Hadoop: HDFS

▪ Programming model

▪ Map-Reduce
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7



 Problem:

▪ If nodes fail, how to store data persistently? 

 Answer:

▪ Distributed File System:

▪ Provides global file namespace

▪ Google GFS; Hadoop HDFS;

 Typical usage pattern

▪ Huge files (100s of GB to TB)

▪ Data is rarely updated in place

▪ Reads and appends are common

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 8



 Chunk servers
▪ File is split into contiguous chunks
▪ Typically each chunk is 16-64MB
▪ Each chunk replicated (usually 2x or 3x)
▪ Try to keep replicas in different racks

 Master node
▪ a.k.a. Name Node in Hadoop’s HDFS
▪ Stores metadata about where files are stored
▪ Might be replicated

 Client library for file access
▪ Talks to master to find chunk servers 
▪ Connects directly to chunk servers to access data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 9



 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines 

▪ Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10

Chunk servers also serve as compute servers



Map-Reduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a 

set of machines
 Performing the group by key step
 Handling machine failures
 Managing required inter-machine 

communication

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 11



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 12

Big document

MAP:
Read input and 

produces a set of 
key-value pairs

Group by key:
Collect all pairs with 

same key
(Hash merge, Shuffle, 

Sort, Partition)

Reduce:
Collect all values 

belonging to the 
key and output



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 13

All phases are distributed with many tasks doing the work



 Programmer specifies:
▪ Map and Reduce and input files

 Workflow:
▪ Read inputs as a set of key-value-

pairs
▪ Map transforms input kv-pairs into a 

new set of k'v'-pairs
▪ Sorts & Shuffles the k'v'-pairs to 

output nodes
▪ All k’v’-pairs with a given k’ are sent 

to the same reduce
▪ Reduce processes all k'v'-pairs 

grouped by key into new k''v''-pairs
▪ Write the resulting pairs to files

 All phases are distributed with 
many tasks doing the work

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

14J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Input and final output are stored on a
distributed file system (FS):

▪ Scheduler tries to schedule map tasks “close” to 
physical storage location of input data

 Intermediate results are stored on local FS
of Map and Reduce workers

 Output is often input to another 
MapReduce task

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15



 Master node takes care of coordination:

▪ Task status: (idle, in-progress, completed)

▪ Idle tasks get scheduled as workers become 
available

▪ When a map task completes, it sends the master 
the location and sizes of its R intermediate files, 
one for each reducer

▪ Master pushes this info to reducers

 Master pings workers periodically to detect 
failures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 16



 Map worker failure

▪ Map tasks completed or in-progress at 
worker are reset to idle

▪ Reduce workers are notified when task is 
rescheduled on another worker

 Reduce worker failure

▪ Only in-progress tasks are reset to idle 

▪ Reduce task is restarted

 Master failure

▪ MapReduce task is aborted and client is notified

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 17



 M map tasks, R reduce tasks
 Rule of a thumb:

▪ Make M much larger than the number of nodes 
in the cluster

▪ One DFS chunk per map is common

▪ Improves dynamic load balancing and speeds up 
recovery from worker failures

 Usually R is smaller than M

▪ Because output is spread across R files

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 18



 Problem
▪ Slow workers significantly lengthen the job 

completion time:
▪ Other jobs on the machine

▪ Bad disks

▪ Weird things

 Solution
▪ Near end of phase, spawn backup copies of tasks
▪ Whichever one finishes first “wins”

 Effect
▪ Dramatically shortens job completion time

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 19



 Often a Map task will produce many pairs of 
the form (k,v1), (k,v2), … for the same key k
▪ E.g., popular words in the word count example

 Can save network time by 
pre-aggregating values in 
the mapper:
▪ combine(k, list(v1))  v2

▪ Combiner is usually same 
as the reduce function

 Works only if reduce 
function is commutative and associative

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20



 Back to our word counting example:

▪ Combiner combines the values of all keys of a 
single mapper (single machine):

▪ Much less data needs to be copied and shuffled!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 21



 Want to control how keys get partitioned
▪ Inputs to map tasks are created by contiguous 

splits of input file

▪ Reduce needs to ensure that records with the 
same intermediate key end up at the same worker

 System uses a default partition function:
▪ hash(key) mod R

 Sometimes useful to override the hash 
function:
▪ E.g., hash(hostname(URL)) mod R ensures URLs 

from a host end up in the same output file

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22



 Open source project managed by the Apache 
Software Foundation

 Current Framework includes:

▪ Implementation of MapReduce

▪ YARN

▪ Hadoop Distributed File System (HDFS)

▪ Hadoop Commons

 Users include Amazon, Facebook, and Ebay1

23

1: https://wiki.apache.org/Hadoop/PoweredBy



24

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html



 High-level scripting platform
 Provides an abstraction from MapReduce

input_lines = LOAD '/tmp/word.txt' AS (line:chararray);
words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;
filtered_words = FILTER words BY word MATCHES '\\w+';
word_groups = GROUP filtered_words BY word;
word_count = FOREACH word_groups GENERATE COUNT(filtered_words) AS 
count, group AS word;
ordered_word_count = ORDER word_count BY count DESC;
STORE ordered_word_count INTO '/tmp/results.txt';

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25



 Data warehouse software
 SQL-like interface (Hive-QL)
 Specify what not how!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 26



 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 27

A B

a1 b1

a2 b1

a3 b2

a4 b3

B C

b2 c1

b2 c2

b3 c3

⋈
A C

a3 c1

a3 c2

a4 c3

=

R

S


