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The	Problem	of	Clustering	

•  Given	a	set	of	points,	with	a	no;on	of	distance	
between	points,	group	the	points	into	some	
number	of	clusters,	so	that	members	of	a	
cluster	are	“close”	to	each	other,	while	
members	of	different	clusters	are	“far.”	



Example:	Clusters	
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Clustering	in	Low	Dimensional	
Euclidean	Space	is	Easy	



Modern	Clustering	Problem	
�  May	involve	Euclidean	spaces	of	very	high	dimension.		

�  Non	Euclidean	space:	Jaccard	distance,	Cosine	Distance,	
Hamming	Distance,	Edit	Distance	etc.	

�  Example:		
�  Cluster	documents	by	topics	based	on	occurrences	of	unusual	

words	
�  Cluster	moviegoers	by	the	type	or	types	of	movies	they	like	
�  Cluster	genes	by	their	sequence	similarity	



A	Popular	Clustering	Algorithm:		
K	Means	

•  k=number	of	clusters	
•  Given	k	and	a	set	of	data	points	in	the	Euclidean	space	

select	k	centers	so	as	the	the	sum	of	squared	distance	
between	each	point	and	its	nearest	center	is	minimized.p	

•  Solving	this	problem	exactly	in	NP	Hard	
•  25	years	ago	Llyod	proposed	a	simple	local	seacrh	based	

algorithm	that	is	s;ll	very	widely	used---has	polynomial	
;me	smoothed	complexity.	
– However	Llyod’s	algorithm	may	get	stuck	at		a	
local	op;ma	
•  K	Means	++	



Llyod’s	Local	Search	Algorithm	



Illustra;on	(taken	from	Wiki)	
Convergence	to	local	op;ma	



Convergence	to		Local	Op;ma	



Selec;ng	centers	by	distance	works	
some	;me	



Selec;ng	centers	by	distance	works	
some	;me	



Selec;ng	centers	by	distance	works	
some	;me	



Selec;ng	centers	by	distance	works	
some	;me	



Sensi;ve	to	Outlier	



K-Means++	

Just	the	ini;aliza;on	in	Llyod’s	algorithm	
changes—everything	else	remains	the	same.	



Objec;ve	based	clustering	

•  K-means:	

•  K-median	

•  K-center	



K-median	

•  In	Llyod’s	algorithm	use	the	next	cluster	
center	as	the	median	of	the	elements	in	the	
cluster.	



Another	simple	local	search	algorithm	

•  Start	with	arbitrary	k	centers:	C	
•  Assign	points	to	the	nearest	center	and	
compute	the	objec;ve	value	

•  If	swapping	a	vertex	x	outside	of	C	with	a	
vertex	v	in	C,	decreases	the	objec;ve	value,	
swap	

The	algorithm	converges	and	gives	a	5-approxima;on.	
	Be_er	approxima;on	bound	known.	



K-center	

•  Minimizes	the	maximum	distance	
•  A	simple	greedy	algorithm	gives	a	2-
approxima;on	

•  Pick	any	vertex	v	arbitrarily	and	declare	it	as	the	
first	center	

•  For	i=2	to	k	
–  Select	the	vertex	in	V	that	is	farthest	from	the	already	
chosen	centers	and	make	it	the	new	i-th	center.	
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Clustering	with	unknown	k	

•  Say	we	want	to	cluster	n	objects	of	some	kind	
(documents,	images,	text	strings)	

	

•  But	we	don’t	have	a	meaningful	way	to	project	into	
Euclidean	space.	

	

•  Using	past	data	train	up	some	classifier	
f(x,y)=same/different.	

	

•  Then	run	f	on	all	pairs	and	try	to	find	most	
consistent	clustering.	
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The	problem	

Harry	Bovik	

H.	Bovik	

Harry	B.	

Tom	X.	
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The	problem	

+ + +:	Same	
	-:	Different	

Harry	Bovik	

H.	Bovik	
Tom	X.	

Harry	B.	

Train	up	f(x)=	same/different		

Run	f	on	all	pairs	

+ 
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The	problem	

+ + +:	Same	
	-:	Different	

Harry	Bovik	

H.	Bovik	
Tom	X.	

Harry	B.	+ 
Totally consistent: 

1.     + edges inside clusters  
2.    – edges outside clusters 
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The	problem	

+ +:	Same	
	-:	Different	

Harry	Bovik	

H.	Bovik	

Harry	B.	

Tom	X.	

Train	up	f(x)=	same/different		

Run	f	on	all	pairs	
+ 
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The	problem	

+ 

+ 

+:	Same	
	-:	Different	

Disagreement	

Harry	Bovik	

H.	Bovik	
Tom	X.	

Harry	B.	

Train	up	f(x)=	same/different		

Run	f	on	all	pairs	

Find	most	consistent	clustering	
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The	problem	

+ 

+ 

+:	Same	
	-:	Different	

Disagreement	

H.	Bovik	

Harry	Bovik	

Harry	B.	

Tom	X.	

Train	up	f(x)=	same/different		

Run	f	on	all	pairs	

Find	most	consistent	clustering	
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Problem:	Given	a	complete	graph	on	n	ver;ces.	
Each	edge	labeled	+	or	-.	
Goal	is	to	find	par;;on	of	ver;ces	as	consistent	as	possible	with	

edge	labels.	
	
Max		#(agreements)		or		Min	#(	disagreements)	
	
						There	is	no	k	:		#	of	clusters	could	be	anything	

The	problem	

+ 

+ 

+:	Same	
	-:	Different	

Disagreement	

Harry	Bovik	

H.	Bovik	

Harry	B.	

Tom	X.	
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The	Problem	

	
Noise		Removal:	
There	is	some	true	clustering.	However	some	edges	

incorrect.	S;ll	want	to	do	well.	
	
Agnos;c	Learning:	
	No	inherent	clustering.	
Try	to	find	the	best	representa;on	using	hypothesis		
	
Eg:	Research	communi;es	via	collabora;on	graph	
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•  There’s	no	k.		(OPT	can	have	anywhere	from	1	to	
n	clusters)																																																																																																																																																																																																																																																																																																																																																																																																																															

	
•  If	a	perfect	solu;on	exists,	then	it’s	easy	to	find:	
C(v)	=	N	+(v).	[Why?]	

	
•  Easy	to	get	agreement	on	½	of	edges.	[Why?]	

Nice	features	of	formula;on	
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Minimizing	Disagreements	

Goal:	Get		a	constant	factor	approx.	
	
	
			



Minimizing	Disagreement	

•  Pick	a	random	permuta;on	of	ver;ces	
•  Select	v	from	the	random	order	and	create	a	
cluster	with	all	its	posi;ve	neighbors	

•  Remove	that	cluster	with	all	associated	edges	
•  Repeat	

Gives	a	3-approxima;on	
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δ-clean	Clusters	
Given	a	clustering,	vertex	δ-good	if	few	disagreements	

v	is	δ-good	

		
N-(v)	Within	C				<	δ|C|	
N+(v)	Outside	C		<	δ|C|	

C	

+:	Similar	
	-:	Dissimilar	
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Algorithm	
1.  Pick	vertex	v.		Let	C(v)	=	N+(v)	
2.  Modify	C(v)			

(a)  Remove		3δ-bad	ver;ces	from	C(v).	
(b)  Add	7δ	good	ver;ces	into	C(v).	

3.  Delete	C(v).		Repeat	un;l	done,	or	above	always	
makes	empty	clusters.	

4.  Output	nodes	ler	as	singletons.	

+ 



34	

Lower	bounding	idea:	bad	triangles	

Consider	
	
	
				
	

+ 

+

We	know	any	clustering	has	to	disagree	
	with	at	least	one	of	these	edges.	
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Lower	bounding	idea:	bad	triangles	

If	several	such	disjoint,	then	mistake	on	each	one	
	
	
				
	

Dopt	>=	#{Edge	disjoint	bad	triangles}	

+ 

+ 

+ + 

+ 

1	

4	 3	

2	5	 2	Edge	disjoint		
Bad	Triangles	
(1,2,3),	(3,4,5)	


