Locality Sensitive Hashing

Barna Saha
Outline

Approximate Near Neighbor Search
Near Neighbor Problem

- Given a set of points V, a distance metric d and a query point q, is there any point x close to query point q: $d(x, q) \leq R$.

Easy in low dimension. Complexity increases exponentially in dimension.
Approximate Near Neighbor Problem

Given a set of points \(V \), a distance metric \(d \) and a query point \(q \), the \((c, R)\)-approximate near neighbor problem requires if there exists a point \(x \) such that \(d(x, q) \leq R \), then one must find a point \(x' \) such that \(d(x', q) \leq cR \) with probability \(> (1 - \delta) \) for a given \(\delta > 0 \).

The technique that we will be using to solve it is Locality Sensitive Hashing.
A family of hash functions \mathcal{H} that is said to be
(c, R, p_1, p_2)-sensitive for a distance metric d, when:

1. $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \geq p_1$ for all x and y such that $d(x, y) \leq R$

2. $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq p_2$ for all x and y such that $d(x, y) > cR$

For \mathcal{H} to be LSH $p_1 > p_2$.
Locality Sensitive Hashing

Example
Let $V \subseteq [0, 1]^n$ and $d(x, y) =$ Hamming distance between x and y. Let $R << n$ and $cR << n$, define $\mathcal{H} = \{h_1, h_2, ..., h_n\}$ such that $h_i(x) = x_i$. $p_1 \geq 1 - \frac{R}{n}$ and $p_2 \leq 1 - \frac{cR}{n}$.
Locality Sensitive Hashing for solving (c,R)-NN problem

- LSH $\mathcal{H} : (c, R, p_1, p_2)$-sensitive
- $h_{i,j} \sim \mathcal{H}, i \in [1, K], j \in [1, L]
- define $g_j = \langle h_{1,j}, h_{2,j}, \ldots, h_{K,j} \rangle$ for all $j \in [1, L]$
Locality Sensitive Hashing for solving \((c,R)\)-NN problem

Preprocessing: For all \(x \in V\) and for all \(j \in [L]\), add \(x\) to
\(\text{bucket}_j(g_j(x))\).
Time\(=O(NLK)\)

Query \(q\)

\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>

\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>
\>

Time\(=O(KL + NLF)\) where \(F\) is the probability for any given \(j\)
that a point \(x\) is hashed to the same bucket by \(g_j\) as \(q\) but
\(d(x, q) > cR\).
Locality Sensitive Hashing for solving \((c,R)\)-NN problem

How much is \(F\)?

Given \(x\) and \(y\) with \(d(x, y) > cr\),

\[
F = \Pr \left[g_j(x) = g_j(y) \mid d(x, y) > cR \right] \\
\prod_{j=1}^{K} \Pr \left[h_{i,j}(x) = h_{i,j}(y) \mid d(x, y) > cR \right] \leq p_2^k
\]

Hence query time \(O(KL + NLp_2^k)\).
Locality Sensitive Hashing for solving \((c,R)\)-NN problem

Success Probability

\[
\Pr \left[\exists j \text{ s.t. } g_j(x) = g_j(q) \mid d(x, q) < cR \right] \\
\geq \Pr \left[\exists j \text{ s.t. } g_j(x) = g_j(q) \mid d(x, q) < cR \right] \\
\geq 1 - (1 - p_1^K)^L
\]
Locality Sensitive Hashing for solving \((c, R)\)-NN problem

How to choose \(K\) and \(L\)

- set \(L = \frac{1}{p_1^K}\). Success probability becomes \(1 - \frac{1}{\varepsilon}\). If \(\delta = \frac{1}{\varepsilon}\)-happy!

- To minimize query cost: \(O(L)\): \(Np_2^K = 1\)

We have

\[
N = \frac{1}{p_2^k} = \left(\frac{1}{p_1}\right)^{k \frac{\log 1/p_2}{\log 1/p_1}} = L^{\frac{\log 1/p_2}{\log 1/p_1}}
\]

We have \(L = N^\rho\), \(\rho = \frac{\log 1/p_1}{\log 1/p_2}\)

Example

\(p_1 = 0.1, p_2 = 0.01\) leads to \(\rho = 0.5\), \(L = \sqrt{N}\), \(K = O(\log N)\). Preprocessing time = \(O(N\sqrt{N} \log N)\), Query time = \(O(\sqrt{N} \log N)\).