Simple Graph Algorithms in the Semi-streaming Model & Map Reduce

Barna Saha

Graph Stream

Consider a stream of m edges

$$\langle e_1, e_2, \ldots, \ldots, e_m \rangle$$

defining a graph G with nodes V = [n] and $E = \{e_1, \ldots, e_m\}$

- Massive graphs include social networks, web graph, call graphs, etc.
- What can we compute about G in o(m) space?
- Focus on semi-streaming space restriction of O(n · polylog n) bits.

Connectivity

- Goal: Compute the number of connected components.
- Algorithm: Maintain a spanning forest F
 - ► *F* ← Ø
 - For each edge (u, v), if u and v aren't connected in F,

$$F \leftarrow F \cup \{(u, v)\}$$

- Analysis:
 - F has the same number of connected components as G
 - ▶ F has at most n − 1 edges.
- Thm: Can count connected components in O(n log n) space.

K-connectivity

- Goal: Check if all cuts are of size at least k.
- Algorithm: Maintain k forests F₁,..., F_k
 - ► $F_1, \ldots, F_k \leftarrow \emptyset$
 - For each edge (u, v), find smallest i ≤ k such that u and v aren't connected in F_i,

$$F_i \leftarrow F_i \cup \{(u, v)\}$$

If no such *i* exists, ignore edge.

Analysis:

- Each F_i has at most n-1 edges so total edges is O(nk)
- ▶ Lemma: Min-Cut(V, E) < k iff Min-Cut($V, F_1 \cup ... \cup F_k$) < k
- Thm: Can check k-connectivity in O(kn log n) space.

Proof of Lemma

- Let $H = (V, F_1 \cup \ldots \cup F_k)$ and let $(S, V \setminus S)$ be an arbitrary cut.
- Since H is a subgraph:

 $|E_G(S)| \geq |E_H(S)|$

where $E_H(S)$ and $E_G(S)$ are the edges across the cut in H and G

Suppose there exists (u, v) ∈ E_G(S) but (u, v) ∉ F₁ ∪ ... ∪ F_k. Then (u, v) must be connected in each F_i. Since F_i are disjoint,

 $|E_H(S)| \geq \min(|E_G(S)|, k)$

Minimum Spanning Forest

- Goal: Obtain the minimum spanning forest
- Algorithm: Maintain a spanning forest F
 - $Initialize F \leftarrow \Phi$
 - Edge (u,v) arrives
 - If u and v not connected in F, insert (u,v) in F
 - If u and v are connected in F then include (u,v) and find the cycle containing it— remove the edge with minimum weight in that cycle
- Analysis
 - *F* is a forest
 - If an edge (u,v) is not in *F* then (u,v) must be the heaviest weight edge in some cycle in *G*
- Thm: Can maintain minimum spanning tree in O(nlog(n)) space

Minimum Spanning Tree in Map Reduce

- Distribute edges randomly to machines. Compute MST on local edges—Combine and Repeat!
- Analysis:
 - Correctness:
 - Use the fact that if an edge is discarded by a machine then it must be the heaviest weight edge in some cycle in a subgraph \rightarrow heaviest weight edge in that same cycle in the original graph
 - Hence combine and repeat is a valid policy
 - Complexity
 - Number of rounds required is at most $\begin{bmatrix} c \\ c \end{bmatrix}$
 - Number of edges before the 1st round m₁=n^{1+c}
 - Number of edges before the 2^{nd} round $m_2 = (n-1)^* n^{c-\epsilon} = n^{1+c-\epsilon}$ and so on

Minimum Spanning Tree in Map Reduce

- Can we partition the vertices?
 - A more complex algorithm by partitioning the vertices exist with nearly same complexity
 - Works under the same principle of combine & repeat

Graph Streams

- Sampling Edges
 - Connectivity, MST, Spanners, Sparsifiers, maximum density estimation....
- Sampling Vertices
 - Estimating graph statistic like number of paths of length two/three etc.

Linear Sketch

 Random linear projection M: Rⁿ→R^k that preserves properties of any v∈Rⁿ with high probability where k≪n.

$$\begin{pmatrix} M \\ v \end{pmatrix} \begin{pmatrix} v \\ v \end{pmatrix} = \begin{pmatrix} Mv \end{pmatrix} \longrightarrow \text{answer}$$

- <u>Many Results</u>: Estimating norms, entropy, support size, quantiles, heavy hitters, fitting histograms and polynomials, ...
- <u>Rich Theory</u>: Related to compressed sensing and sparse recovery, dimensionality reduction and metric embeddings, ...

Linear Sketch for F_2

Advantages of Linear Sketch

- Can handle deletion in streams
- Allows for distributed computing
- Exercise: Implement a MapReduce algorithm for computing F₂ where the stream is decomposed into k substeams and sent to k different machines initially.
- Similarly there exists linear sketches for graphs to handle deletion of edges.

Sliding/Decaying Window Model

- Only the last W items matter
 - Can you extend the algorithms for Count Min sketch and F₂ estimation in the sliding window model?
- Decaying window model
 - No fixed window size but older items have less importance
 - Can you extend the algorithms for Count Min sketch and F₂ estimation in the sliding window model?