Simple Graph Algorithms in the Semi-streaming Model & Map Reduce

Barna Saha
Consider a stream of m edges

\[\langle e_1, e_2, \ldots, e_m \rangle \]

defining a graph G with nodes $V = [n]$ and $E = \{e_1, \ldots, e_m\}$

- Massive graphs include social networks, web graph, call graphs, etc.
- What can we compute about G in $o(m)$ space?
- Focus on *semi-streaming* space restriction of $O(n \cdot \text{polylog } n)$ bits.
Connectivity

- **Goal:** Compute the number of connected components.
- **Algorithm:** Maintain a spanning forest F
 - $F \leftarrow \emptyset$
 - For each edge (u, v), if u and v aren’t connected in F,
 \[F \leftarrow F \cup \{(u, v)\} \]
- **Analysis:**
 - F has the same number of connected components as G
 - F has at most $n - 1$ edges.
- **Thm:** Can count connected components in $O(n \log n)$ space.
K-connectivity

- **Goal:** Check if all cuts are of size at least k.
- **Algorithm:** Maintain k forests F_1, \ldots, F_k
 - $F_1, \ldots, F_k \leftarrow \emptyset$
 - For each edge (u, v), find smallest $i \leq k$ such that u and v aren’t connected in F_i,
 $$F_i \leftarrow F_i \cup \{(u, v)\}$$
 - If no such i exists, ignore edge.
- **Analysis:**
 - Each F_i has at most $n - 1$ edges so total edges is $O(nk)$
 - **Lemma:** $\text{Min-Cut}(V, E) < k$ iff $\text{Min-Cut}(V, F_1 \cup \ldots \cup F_k) < k$
 - **Thm:** Can check k-connectivity in $O(kn \log n)$ space.
Proof of Lemma

Let $H = (V, F_1 \cup \ldots \cup F_k)$ and let $(S, V \setminus S)$ be an arbitrary cut.

Since H is a subgraph:

$$|E_G(S)| \geq |E_H(S)|$$

where $E_H(S)$ and $E_G(S)$ are the edges across the cut in H and G.

Suppose there exists $(u, v) \in E_G(S)$ but $(u, v) \notin F_1 \cup \ldots \cup F_k$. Then (u, v) must be connected in each F_i. Since F_i are disjoint,

$$|E_H(S)| \geq \min(|E_G(S)|, k)$$
Minimum Spanning Forest

- **Goal:** Obtain the minimum spanning forest
- **Algorithm:** Maintain a spanning forest F
 - Initialize $F \leftarrow \emptyset$
 - Edge (u,v) arrives
 - If u and v not connected in F, insert (u,v) in F
 - If u and v are connected in F then include (u,v) and find the cycle containing it— remove the edge with minimum weight in that cycle
- **Analysis**
 - F is a forest
 - If an edge (u,v) is not in F then (u,v) must be the heaviest weight edge in some cycle in G
- **Thm:** Can maintain minimum spanning tree in $O(n \log(n))$ space
Minimum Spanning Tree in Map Reduce

- Distribute edges randomly to machines. Compute MST on local edges—Combine and Repeat!

- Analysis:
 - Correctness:
 - Use the fact that if an edge is discarded by a machine then it must be the heaviest weight edge in some cycle in a subgraph→ heaviest weight edge in that same cycle in the original graph
 - Hence combine and repeat is a valid policy
 - Complexity
 - Number of rounds required is at most $\left\lceil \frac{C}{\epsilon} \right\rceil$
 - Number of edges before the 1st round $m_1 = n^{1+c}$
 - Number of edges before the 2nd round $m_2 = (n-1)n^{c-\epsilon} = n^{1+c-\epsilon}$ and so on
Minimum Spanning Tree in Map Reduce

• Can we partition the vertices?
 – A more complex algorithm by partitioning the vertices exist with nearly same complexity
 – Works under the same principle of combine & repeat
Graph Streams

• **Sampling Edges**
 – Connectivity, MST, Spanners, Sparsifiers, maximum density estimation....

• **Sampling Vertices**
 – Estimating graph statistic like number of paths of length two/three etc.
Linear Sketch

- **Random linear projection** $M: \mathbb{R}^n \rightarrow \mathbb{R}^k$ that preserves properties of any $v \in \mathbb{R}^n$ with high probability where $k \ll n$.

\[
\begin{pmatrix}
M \\
v
\end{pmatrix}
\begin{pmatrix}
v
\end{pmatrix} =
\begin{pmatrix}
Mv
\end{pmatrix} \rightarrow \text{answer}
\]

- **Many Results:** Estimating norms, entropy, support size, quantiles, heavy hitters, fitting histograms and polynomials, ...

- **Rich Theory:** Related to compressed sensing and sparse recovery, dimensionality reduction and metric embeddings, ...
Linear Sketch for F_2

To construct each row pick a hash function $h:\{1,n\} \to \{+1,-1\}$ uniformly at random from a family of 4-wise independent universal hash family. $z(l,i)=h_i(i)$

Pick k such hash functions independently: h_1, h_2, \ldots, h_k to construct the k rows.
Advantages of Linear Sketch

- Can handle deletion in streams
- Allows for distributed computing

- Exercise: Implement a MapReduce algorithm for computing F_2 where the stream is decomposed into k substreams and sent to k different machines initially.

- Similarly there exists linear sketches for graphs to handle deletion of edges.
Sliding/Decaying Window Model

• Only the last W items matter
 – Can you extend the algorithms for Count Min sketch and F_2 estimation in the sliding window model?

• Decaying window model
 – No fixed window size but older items have less importance
 • Can you extend the algorithms for Count Min sketch and F_2 estimation in the sliding window model?