Data Streaming Algorithms

Motivation

» Data arrives in a stream or streams
» If not processed immediately or stored, then data is lost for
ever.

» Data arrives so rapidly that it is not feasible to store it all in
active storage.

» We need new algorithmic paradigm to handle data streams.

Example of Data Streams

Sensor Data.

» A temperature sensor in the ocean sending reading every one
hour—-Not an interesting stream since the data rate is low. It
will not stress modern technology, and the entire stream can
be kept in main memory.

Example of Data Streams

Sensor Data.

» A temperature sensor in the ocean sending reading every one
hour—Not an interesting stream since the data rate is low. It
will not stress modern technology, and the entire stream can

be kept in main memory.

» Suppose the sensor senses surface height information which
changes rapidly. Now the sensor is sending data back every
tenth of a second. If it sends a 4-byte real number each time,
then it produces
4 % 10 * 3600 * 24 = 3456000bytes = 3.5Megabyte/per
day.—-Still ok.

Example of Data Streams

Sensor Data.

» A temperature sensor in the ocean sending reading every one
hour—Not an interesting stream since the data rate is low. It
will not stress modern technology, and the entire stream can

be kept in main memory.

» Suppose the sensor senses surface height information which
changes rapidly. Now the sensor is sending data back every
tenth of a second. If it sends a 4-byte real number each time,
then it produces
4 % 10 % 3600 * 24 = 3456000bytes = 3.5Megabyte/per
day.—Still ok.

» We may need to employ a million sensors to learn about
ocean behavior.—3.5 terabytes of data per day, million of

data arriving every tenth of a second.

Example of Data Streams

Image Data.

» Satellites often send down to earth streams consisting of many
terabytes of images per day.

Example of Data Streams

Image Data.

» Satellites often send down to earth streams consisting of many
terabytes of images per day.

» Surveilance cameras may produce images at every second.
London is said to have six millions of such cameras.

Example of Data Streams

Internet and Web Traffic.

» A switching node in the middle of the Internet receives
streams of IP packets from many inputs and routes them to
its outputs: denial or service attacks.

Example of Data Streams

Internet and Web Traffic.

» A switching node in the middle of the Internet receives
streams of |P packets from many inputs and routes them to
its outputs: denial or service attacks.

» Google receives several hundred million search queries per day.

Example of Data Streams

Internet and Web Traffic.

» A switching node in the middle of the Internet receives
streams of IP packets from many inputs and routes them to
its outputs: denial or service attacks.

» Google receives several hundred million search queries per day.
» Yahoo! accepts billions of clicks per day on its various sites.

Example of Data Streams

Internet and Web Traffic.

» A switching node in the middle of the Internet receives
streams of |P packets from many inputs and routes them to
its outputs: denial or service attacks.

» Google receives several hundred million search queries per day.
» Yahoo! accepts billions of clicks per day on its various sites.

» Many interesting things can be learnt from these streams. An
increase in queries like "sore throat” may help to track the
spread of viruses. A sudden increase in the click rate for a link
could indicate some news connected to that page etc.

Which industries are deploying stream processors?

>

Smart Cities - real-time traffic analytics, congestion prediction
and travel time apps.

Oil & Gas - real-time analytics and automated actions to
avert potential equipment failures.

Security intelligence for fraud detection and cybersecurity
alerts. For example, detecting Smart Grid consumption issues,
and SIM card misuse.

Industrial automation, offering real-time analytics and
predictive actions for patterns of manufacturing plant issues
and quality problems.

For Telecoms, real-time call rating, fraud detection and QoS
monitoring from CDR (call detail record) and network
performance data.

Cloud infrastructure and web clickstream analysis for IT
Operations.

Few Stream Processing Systems

» SQLstream http://www.sglstream.com/blaze/: use
standards-compliant SQL for querying live data streams

» Spark Streaming: to build streaming applications in Apache
Spark. Apache Spark is a general framework for large-scale
data processing that supports concepts such as MapReduce,
stream processing, graph processing or machine learning.

» IBM InfoSphere Streams: IBM's flagship product for stream
processing.

» Apache Storm: an open source framework that provides
massively scalable event collection.

Developing Streaming Algorithms

The main hurdle is the space.

Often it is much more efficient to get an approximate
answer than an exact answer.

Often the algorithm uses randomization like hashing
and sampling.

Heavy Hitter Problem

» Problem. Given an array A of length m, and a parameter k,
find those values that occur at least % times.

» Applications:

1. Computing popular products. A could be all of the page
views of products on amazon.com yesterday. The heavy hitters
correspond to frequently viewed items.

2. Computing frequent search queries. For example, A could
be all of the searches on Google yesterday. The heavy hitters
are then searches made most often.

3. ldentifying heavy TCP flows. Here, A is a list of data
packets passing through a network switch, each annotated with
a source-destination pair of IP addresses. The heavy hitters are
then the flows that are sending the most traffic. This is useful
for, among other things, to identify denial-of-service attacks.

4. ldentifying volatile stocks. Here, A is a list of stock trades.

Finding Majority

» Input. An array A of length m with the promise that it has a
majority element—a value that is repeated strictly more than

m -
= times.
» Problem. Find the Majority element in linear time.

Finding Majority

» Input. An array A of length m with the promise that it has a
majority element—a value that is repeated strictly more than
m -
- times.

» Problem. Find the Majority element in linear time.

» Compute median of A.

Finding Majority

» Input. An array A of length m with the promise that it has a
majority element—a value that is repeated strictly more than
m -
- times.

» Problem. Find the Majority element in linear time in a single
left to right pass in “constant” space.

Finding Majority

» Problem. Find the Majority element in linear time in a single
left to right pass in “constant” space.

» Algorithm.
1. Set count = 1, current = A(1).
2. Fori=2,3,...
2.1 If count == 0, set current = A(i), count =1,

2.2 If A(i) == current, set count = count + 1
2.3 Else set count = count — 1

3. Return current

Finding Majority

» Problem. Find the Majority element in linear time in a single
left to right pass in “constant” space.

» Algorithm.
1. Set count =1, current = A(1).
2. Fori=2,3,...
2.1 If count == 0, set current = A(i), count = 1,

2.2 If A(i) == current, set count = count + 1
2.3 Else set count = count — 1

3. Return current

» Exercise. Given there exists a majority element, show that the
above algorithm correctly returns the majority.

Heavy Hitter Problem

» Can we solve Heavy Hitter Problem in small space? Ideally in
O(k) space.

Heavy Hitter Problem

» Can we solve Heavy Hitter Problem in small space? Ideally in
O(k) space.

» There is no algorithm that solves the Heavy Hitters problems
in one pass while using a sublinear amount of auxiliary space.

e-Approximate Heavy Hitter Problem

» Input is an array A of length m with two parameters ¢ and k.
» QOutput

1. Every value that occurs at least * times in A is in the list.
2. Every value in the list occurs at least % —em times in A

e-Approximate Heavy Hitter Problem

» Input is an array A of length m with two parameters ¢ and k.

» Qutput

1. Every value that occurs at least T times in A is in the list.
2. Every value in the list occurs at least % —em times in A

» Why not set ¢ = 07

e-Approximate Heavy Hitter Problem

» Input is an array A of length m with two parameters ¢ and k.
» Output

1. Every value that occurs at least * times in A is in the list.
2. Every value in the list occurs at least % —em times in A

» Why not set ¢ = 07

» Space usage grows proportionately with %

e-Approximate Heavy Hitter Problem

» Input is an array A of length m with two parameters ¢ and k.
» Output

1. Every value that occurs at least F times in A is in the list.

2. Every value in the list occurs at least % —em times in A
» Why not set ¢ = 07

» Space usage grows proportionately with %

» If we take e = ﬁ space usage is O(k), all elements with

frequency 7 is in the list and the elements in the list have
frequency at least .

Estimating Frequency of Elements

» Input Stream of m elements from a universe [1, n|:
A(1),A(2),...,A(m).

» Frequency of an element i € [1, n] in the stream is
fi=It| A(r) =il.

» Problem

» For i € [n], estimate f; (Point Query)
» For ¢ € [0,1], find all i with f; > ¢m. (Heavy Hitter)

Count-Min Sketch

» Select an € > 0 and & > 0: € denotes the error-parameter, and
& denotes our confidence.

» Select d = ln% hash functions hi, ho, ..., hy independently and
randomly from a pair-wise independent hash family. Each
hi : {1,2,...,n} — {1,2,...,w} where w = £.

» Initialize a table T of dimension d x w all with 0.

» Update: At time t, when A(t) arrives, do the following.

» T(1,h(A(t))) = T(1, hi(A(L))) +1
» T(2, ha(A(2))) = T(2, ha(A(t))) + 1

=

=

v T(d, ha(A(t))) = T(d, ha(A(t))) + 1

http://research.neustar.biz/tag/count-min-sketch/

Count-Min Sketch:Point Query

» Problem For i € [n], estimate f;
» Output An estimate f; such that f; < f; < f; + €||f||1
» Algorithm Construct Count-Min sketch. Return

d .
min T(/, h(i))

Count-Min Sketch:Point Query

» Algorithm Construct Count-Min sketch. Return

d .
min T(/, hi(i))

» Each T(/, hi(i)) > fi. Hence min?_, T(/, hy(i)) > f:.

» Define an indicator random variable Xj’, j=1,2,..n and
[=1.2,...d.

X! = 1if hy(j) = hi(i), else X/ =0
> Define Y =3, ; ﬂXj’ Then T(I,h(i))=fi+Y.

Count-Min Sketch:Point Query

E[Y]=) _ElfXj]1=) _fEIX]]

j#i j#i

= Z f; Prob(h(j) = h(i))
J#i

- Z% (h is picked from a pair-wise family)
j#i

_ lIflls

w

Count-Min Sketch:Point Query

Prob (T (I, hi(i))] > fi + €||f||1) = Prob(Y > €||f||1)
= Prob(Y > weE[Y])

< 1 (By Markov Inequality)
wWe
1 . e

=2 (since w = z)

Count-Min Sketch:Point Query

d

Prob (r,n_i;\ T(1, hy(i))] > fi + €||f||l)

d
= Prob (ﬂ T(1, hi(i))] > fi + ellflll)
I=1

=2

d 1 In 3
= T Prob (T(I, hi(i))] > £ + €lIfl1) < (_) 5
I=1

e
» Hence Prob (minf_, T(/, h(i))] < f; +€||f||1) > 1 3.
» Therefore f; < f; < f; + e||f||1 with probability > 1 — 4.
» Space= O(wd) = O(£In1).

Count-Min Sketch:Heavy Hitter

» Set &' = £, using space O(% In §) obtain estimates such that

n

“For All is f; < f: < f + em.

» Use a min-heap to store the heavy-hitters.

1.
2.

Keep a count on the total number of elements m arrived so far.
When item A(i) arrives, compute its estimated frequency from
the count-min sketch data structure.

If the count is above % insert it in the heap with key
Count(A(i)), and delete any previous occurrence of A(i) from
the heap.

If any element in the heap has count less than % delete it
through operations such as Find-Min and Extract-Min.
Assuming no large error happens in the Count-Min sketch, the
heap size is bounded by 2k. Why? Therefore extra work per
item to process the heap is O(log k).

At the end, scan the heap, and for every item whose estimated
frequency is > % return it as a heavy hitter.

Count-Min Sketch:Heavy Hitter

» Set &' = %, using space O(% In §) obtain estimates such that
“For All is f; < f; < f; +em.

» Set &' = -2 using space O(XIn) — O(1In) obtain
estimates such that “For All t = 1,2, .., ms the estimated

frequency is within the error-range.
» Use a min-heap to store the heavy-hitters.

1. Keep a count on the total number of elements m arrived so far.

2. When item A(/) arrives, compute its estimated frequency from
the count-min sketch data structure.

3. If the count is above % insert it in the heap with key
Count(A(i)), and delete any previous occurrence of A(i) from
the heap.

4. If any element in the heap has count less than % delete it
through operations such as Find-Min and Extract-Min.

5. Assuming no large error happens in the Count-Min sketch, the
heap size is bounded by 2k. Why? Therefore extra work per
item to process the heap is O(log k).

6. At the end, scan the heap, and for every item whose estimated
frequency is > % return it as a heavy hitter.

Miscelleneous

» Implementation: http://www.cs.rutgers.edu/~muthu/
massdal-code-index.html

» Twitter's algebird and ClearSpring's stream-lib offer
implementations of Count-Min sketch and various other data

structures applicable for stream mining applications.
» Application: Mostly a list of papers that use CM-sketch

» http://sites.google.com/site/countminsketch/
cm-eclectics

» http://sites.google.com/site/countminsketch/
compressed-sensing

» http:
//sites.google.com/site/countminsketch/databases

Mini Exercise [Due Oct 31%]

* Implement Count Min Sketch and plot the
frequency of all elements as reported by the
Count Min sketch data structure as well as
their true frequencies using €=0.01 and
number of hash functions=25.

— Data: consider a stream of size 1000000 where
each element in the stream arrives from [1,1000]
chosen uniformly at random.

