Support Vector Machines &
Kernelization

Barna Saha

Most of the slides are made using David
Sontag’s course on machine Learning at MIT

Linear Separators

= \Which of these linear separators is optimal?

Support Vector Machines

» SVMs (Vapnik, 1990°s) choose the linear separator with the
largest margin

* Good according to intuition, theory, practice

Support Vector Machines

» SVMs (Vapnik, 1990°s) choose the linear separator with the
largest margin

« SVM became famous when, using images as input, it gave
accuracy comparable to neural-network with hand-designed
features in a handwriting recognition task

rd
/s
4 .
/

o

* Good according to intuition, theory, practice

What if the data is not linearly
separable?

* General idea: the original feature space can always be mapped to
a different (often some higher-dimensional feature space) where
the training set is separable: [x,, x,] 2 [\sqrt(x,?+x,%), arctan(x,/x,)]

L .
(I) .
[o X— (p(X)
................... ®
...... .
® .] e ® T
........
l. “'
. ot
o .
“‘
. .t . .,
o . e,
"‘ .
. *,
o ® o .. @
.
. .0,
. .
= .
o o »

What if the data is not linearly
separable?

* If there is a separator which “almost” separates, find a separator
that minimizes some kind of loss function.

Support vector machines: 3 key ideas

1.Use optimization to find solution (i.e. a hyperplane)
with few errors

2.Seek large margin separator to improve
generalization

3. Use kernel trick to make large feature
spaces computationally efficient

Finding a perfect classifier (when one exists)
using linear programming

For every data point (x;, y;), enforce the
constraint

foryy=+1, w-x; +b>1
andfory,=-1, w-x; +b< —1

Equivalently, we want to satisfy all of the
linear constraints

y(w-zg +0)>1 Vi

This linear program can be efficiently
solved using algorithms such as simplex,
interior point, or ellipsoid

w is normal to the hyperplane w.x+b=0

Finding a perfect classifier (when one exists)
using linear programming

1 ol - For every data point (x, y;), enforce the
'/ "l ,,’l constraint

Y o

) -

Q
N foryy=+1, w-x;, +b>1
M What happens if the data set is not linearly separable?
ar =1 Equivalently, we want to satisfy all of the
T linear constraints
= y(w-zg +0)>1 Vi
" L = -_ This linear program can be efficiently

solved using algorithms such as simplex,
interior point, or ellipsoid

Key idea #1: Allow for slack

minimizey ;. %5
(W.Xj b) Y > 1 -% ,Vj &=0

“slack variables”

We now have a linear program again,
and can efficiently find its optimum

For each data point:
«If functional margin = 1, don’t care
«If functional margin < 1, pay linear penalty

Key idea #1: Allow for slack

minimizey 5. ¢
(wxj+b)y; >1-§ ,Vj 520
¢

“slack variables”

What is the optimal value Ej as a function
of w* and b*?

If (w-2; +b)y; > 1,theng=0

If (w-z; +b)y; <1,theng=1—(w-z; +b)y;

Sometimes written as *

(1—(w-a:j -l-b)yj)+ & & =max(0,1— (w-z; +b)y;)

Equivalent hinge loss formulation

minimizey ;. % &
(W.Xj +b) yj = 1-& ,Vj &0

Substituting §; = max (0,1 — (w - z; + b)y;) into the objective, we get:

min Y max (0, 1—(w-z;+0b) yj)
J

The hinge loss is defined as {,;,,40(y,7) = max (0, 1- g}y)

- Crinee (Ui, W - 25 + b
%l?zjz hinge (Yj, W - T; + b)

This is empirical risk minimization,
using the hinge loss

Key idea #2: seek large margin

v

What is 7 (geometric margin) as a function of w?

7; = Distance to i’th data point w-xz1+b=1

7 = min~;
1

w-:z:z-i:b=0

L)
+
/]

ry ((131 — 332) =1
% 5
i We also know that:
_w
. ¥ I
X4 y
= W - W= w

(assuming there is a data point
onthe wx + b=+1or-1line)

Final result: can maximize 7Y by minimizing ||w||,!!!

(Hard margin) support vector machines

"~
'
4

minimizey ;, w.w

=~

£ .
. : (w.xj + b) yj > 1, Vj
o 2
+ Example of a convex optimization problem
+ P — A quadratic program
— Polynomial-time algorithms to solvel
Hyperplane defined by support vectors
1
arai
rgin 2y
Non-support Vectors:
« everything else Support Vectors:
« moving them will * data points on the
not change W canonical lines

Allowing for slack: “Soft margin SVM”

minimizey ;, W.w+Cx§
- (ij—|—b)y] 1- §J ,Vj &>0

“slack varlables

- = Slack penalty C > 0:

O » C=0 = have to separate the datal
* C=0 - ignores the data entirely!

For each data point:
If margin = 1, don'’t care
If margin < 1, pay linear penalty

Equivalent formulation using hinge loss

minimizew,b W.W+CZ &
(W.Xj +b) Yy > 1'% , V9 &=0

Substituting ¢; = max (0,1 — (w - x; + b) y;) into the objective, we get:

min ||w||? + C’Zmax (0,1 = (w-z; +b)y;)
J

Recall, the hinge loss is (hinge(Y,7) = max (0, 1- Qy)

: 2 . : .
min [[wl[3 + C') bhinge (¥, w - ; +)

/ J
This is called regularization; This part is empirical risk minimization,
used to prevent overfitting! using the hinge loss

What If the data is not linearly

separable?

Use features of features
of features of features....

- [2@
2(n)
- COME)
r\’'xr
- Hz) =1 L0,

—

Feature space can get really large really quickly!

P(X1,%;) > (%1%, X%, %21, X,?)

(9
O

a))
o e,
) ' B K
-/ X x
) Py 4
- O /
- X X X
f X
) O | X
| X
O O ll X X
0 X x
AN X
o \
O X
Q - X

O O
.:|
0
O o X X
o o
- X X
X
0 0
X X
Q - x
[0 X
X
o - X X
“ C
8 X
X X
X
X

Linear separator in the feature ¢-space
[Tommi Jaakkola]

» As a result, prediction can be performed with:

Key idea #3: the kernel trick

» High dimensional feature spaces at no extra cost!
W = Z QiYi Xy
g « sign(w - ¢(x))
= sign (3 awwis(x:)) - 6(x)
= sign (Y auwi(6(x) - ()

- sign(z ciyik (i, %)) where K (x,X) = $(x) - ()

Key idea #3: the kernel trick

« High dimensional feature spaces at no extra cost!

Kernel method enables one to operate in a high-dimensional,
implicit feature space without ever computing the coordinates of
the data in that space but rather by simply computing the inner
products between the images of all pairs of data in the feature
space.

Often computationally cheaper than the explicit computation of the
coordinates.

Polynomial kernel

d=1

u v
o(u).o(v) = (!) : (!) = U1v1 + UpUp = UV
uz U2
d=2 U3 vg
Uru2 U102 2,2 2,2
. et . == 2
d(u).0(v) oy - ujvy + u1v1u22v2 + u5v5
u3 v3) = (u1v1 + uovo)

= (u.v)?
For any d (we will skip proof):

o(u).¢(v) = (u.v)

Polynomials of degree exactly d

Common kernels
Polynomials of degree exactly d
K(u,v) = (u-v)*
Polynomials of degree up to d
K(uv)=(u-v+1)¢

Gaussian kernels

T 2
K (u,7) = exp (_||u ”2)

202

Sigmoid
K(u,v) =tanh(qu-v +v)

And many others: very active area of research!

