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The	Machine	Learning	Model	
•  Training	set:	A	training	set	consists	of	a	set	of	pairs	(x,y),	called	
training	examples,	where	
•  x	is	a	vector	of	values,	o?en	called	a	feature	vector	

•  Can	be	categorical	or	numerical	

•  y	is	the	label,	the	classificaCon	value	for	x.	
•  The	objecCve	of	the	ML	process	is	to	discover	the	funcCon	
y=f(x)	that	best	predicts	the	value	of	y	associated	with	each	
vector	x	
•  Example:	

•  y	is	a	real	number:	regression	
•  y	is	a	boolean	value:	binary	classificaCon	
•  y	is	a	member	of	some	finite	set:	mulCclass	classificaCon	

	 		



Example	
•  Training	set	([1],	2),	([2],1),	([3],4),	([4],3)	
•  Learn	a	linear	funcCon	f(x)=ax+b	that	best	represents	the	
points	of	the	training	set.	
•  Minimize	with	respect	to	a	and	b	

•  a=3/5	and	b=1	



Perceptrons	
•  Perceptrons	are	threshold	funcCons	applied	to	the	
components	of	the	vector	x=(x1, x2, ……, xd).	A	weight	wi	is	
associated	with	the	i-th	component	for	each	i=1,2,…,d and	
there	is	a	threshold	θ.	The	output	is	+1	if		

and	-1	otherwise	
•  Suitable	for	binary	classificaCon	even	when	the	number	of	
features	is	very	large.		

•  Neural	nets	are	acyclic	networks	of	perceptrons,	with	the	
outputs	of	some	perceptrons	used	as	inputs	to	others.		



Exercise	
•  Exercise	12.1.1	of	Leskovec	et	al.’s	book	
•  Requires	f(x)	to	be		a	straight	line	passing	through	the	origin	
•  Requires	f(x)	to	be	quadraCc	



Perceptrons	
•  w.x=θ


w




Perceptrons	
•  A	perceptron	classifier	works	only	for	data	that	is	linearly	
separable,	in	the	sense	that	there	is	some	hyperplane	that	
separates	all	the	posiCve	points	from	all	the	negaCve	points.	

•  If	there	are	many	such	hyperplanes,	the	perceptron	will	
converge	to	one	of	them,	and	will	thus	correctly	classify	all	the	
training	data.	

•  If	no	such	hyperplane	exists,	then	the	perceptron	cannot	
converge	to	any	parCcular	one.	



Training	a	Perceptron	with	
Zero	Threshold	
•  IniCalize	the	weight	vector	w	to	all	0’s.	
•  Pick	a	learning-rate	parameter	η,	which	is	a	small,	posiCve	real	
number.		

•  Consider	each	training	example	t=(x,y)	in	turn	
•  (a)	Let	y’=w.x

•  (b)	If	y’	and	y	have	the	same	sign,	then	do	nothing;	t	is	properly	
classified.	

•  (c)	However,	if	y’	and	y	have	different	signs	or	y’=0,	replace,	w	
by	w=w+ηyx




Perceptrons	
•  w.x=θ
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Perceptrons	
•  w.x=θ
 w
 -ηx


	



Example	
•  Training	data:	
•  [1,1,0,1,1]à+1	
•  [0,0,1,1,0]à-1	
•  [0,1,1,0,0]à+1	
•  [1,0,0,1,0]à-1	
•  [1,0,1,0,1]à+1	
•  [1,0,1,1,0]à-1	

Take	η=1/2			

SoluCon:	w=[0,1,0,-1/2,1/2]	



Convergence	of	Perceptrons	
•  Hard	to	tell	if	the	data	is	linearly	separable	
•  Stop	a?er	a	fixed	number	of	iteraCons	

•  Terminate	when	the	number	of	misclassified	points	stop	changing	

•  Withhold	a	test	set	from	the	training	data,	and	a?er	each	round,	
run	the	perceptron	on	the	test	data.	Terminate	the	algorithm	
when	the	number	of	errors	on	the	test	set	stops	changing.	

•  Lower	the	training	rate	with	the	number	of	iteraCons	



Allowing	the	Threshold	to	Vary	
•  Replace the vector w=(w1, w2, ……, wd) by 


w’=(w1, w2, ……, wd, θ)

•  Replace every feature vector x=(x1, x2, ……, xd) by


x’ =(x1, x2, ……, xd,-1)





	

w’.x’	>	0	is	equivalent	to	w.x-θ	>	0	



Why	does	Perceptron	
converge?	
•  Theorem: On any sequence of examples x1, x2,…,xt, if there 

exists a vector w* such that xt.w* ≥ 1 for the positive examples 
and xt.w*≤ -1 for the negative examples, then the Perceptron 
algorithm makes at most R2|w*|2 mistakes, where R=maxt|xt|


•  Proof in board (pg 143-147 of Foundations of Data Science 
book by Blum et al.)




Why	does	Perceptron	
converge?	
•  DeYine “hinge-loss” of w* on a positive example xt as 

max(0,1-xt.w*) and on a negative example xt as 
max(0,1+xt .w*)


•  DeYine Lhinge(w*, S) as the sum of hinge-losses of w* on all 
examples in S.


•  Theorem: On any sequence of examples S=x1,x2,…, the 
Perceptron algorithm makes at most 


minw*(R2|w*|2+2Lhinge(w*,S)) mistakes, 

    where R=maxt|xt|.



