Bloom Filter & Hashing

Barna Saha
Bloom Filter

- Checks for SET MEMBERSHIP efficiently

Is element x in the set?
Motivating Example

• **Spam Filtering**

- We have a set of 1 billion email addresses that we consider to be non-spam.
- Each stream element is of the form (email address, email).
- Before accepting the email, a mail-client needs to check if this address belongs to set S.
- Each typical email address requires 20 bytes of storage whereas in the main memory we only have say 1 billion byte (roughly 1 Gigabyte), or 8 billion bits.
- We cannot store all the valid email addresses in the main memory.
Motivating Example

• Spam Filtering
 – All valid emails must be delivered
 – Number of spam emails delivered should be as low as possible
Bloom Filter

1. An array of n bits, initially all 0's.
2. A collection of hash functions h_1, h_2, \ldots, h_k. Each hash function maps "key" values to n buckets, corresponding to the n bits of the bit-array.
3. A set S of m key values

The purpose of the Bloom Filter is to allow efficient insertion of new element into the set and answer membership queries of the form "Is element e in set S?"
Bloom Filter

Initialization: Set the bit-array to all 0's. For every key $K \in S$ set

$$h_1(K), h_2(K), ..., h_k(K)$$

bits to 1.

Testing for membership: To test a key K' that arrives in the stream, check that all of

$$h_1(K'), h_2(K'), ..., h_k(K')$$

are 1's in the bit-array.
If all of them are 1, then return \textit{YES}, else return \textit{NO}.
Analysis of Bloom Filter

False Negative. No false negative. If a key value is in S, then the element will surely pass through the filter, and the answer will be YES.

False Positive. A key which is not in set S may still pass. We need to analyze the rate of false positives.
Analysis of Bloom Filter

False Positive.

- For simplicity, we assume that for every key K and hash function h_i, $h_i(K)$ is distributed independently and uniformly over the range of values 1 to n.
- For any $1 \leq l \leq n$, let us calculate the prob of the lth bit to remain 0 after inserting all the m elements. It is \[(1 - \frac{1}{n})^{km} = (1 - \frac{1}{n})^{n \frac{km}{n}} \approx e^{-\frac{km}{n}}.\]
- Therefore, the probability that the lth bit is 1 is simply $1 - e^{-\frac{km}{n}}$.
- Probability of false positive $= (1 - e^{-\frac{km}{n}})^k$.
Spam Filtering Example

- We have

\[n = 8 \times 10^9 \]
\[m = 10^9 \]
Optimum Value of k

- As the number of hash functions increase, higher is the chance of finding a 0 bit cell.
- Also with increasing number of hash functions, the number of cells with 0 bits decreases.
- Optimum value obtained by differentiation:

$$k = \ln 2 \times \frac{n}{m}$$
Applications of Bloom Filter

• Bloom Filter has found innumerable applications in networking and web technology
Akamai Content Distribution Network.

“Akamai’s web servers use Bloom filters to prevent one-hit-wonders from being stored in its disk caches. One-hit-wonders are web objects requested by users just once, something that Akamai found applied to nearly three-quarters of their caching infrastructure. Using a Bloom filter to detect the second request for a web object and caching that object only on its second request prevents one-hit wonders from entering the disk cache, significantly reducing disk workload and increasing disk cache hit rates.”

Accessing objects from cache is must faster. Bloom filter allows the detection of objects that are requested for the second time, rather than wasting cache space for one-hit wonders.

Figure: “Using a Bloom filter to prevent one-hit-wonders from being stored in a web cache decreased the rate of disk writes by nearly one half, reducing the load on the disks and potentially increasing disk performance.”

“Google BigTable, Apache HBase and Apache Cassandra use Bloom filters to reduce the disk lookups for non-existent rows or columns in SSTables. Avoiding costly disk lookups considerably increases the performance of a database query operation.”

Reference: Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay; Hsieh, Wilson; Wallach, Deborah; Burrows, Mike; Chandra, Tushar; Fikes, Andrew; Gruber, Robert (2006), “Bigtable: A Distributed Storage System for Structured Data”, OSDI.
“The Google Chrome web browser used to use a Bloom filter to identify malicious URLs. Any URL was first checked against a local Bloom filter, and only if the Bloom filter returned a positive result was a full check of the URL performed (and the user warned, if that too returned a positive result).”

Learn more about Bloom Filter

Video link: https://www.youtube.com/watch?v=947gWqwkhu0
Analysis of Bloom Filter

False Positive.

For simplicity, we assume that for every key \(K \) and hash function \(h_i \), \(h_i(K) \) is distributed independently and uniformly.

Therefore, the probability that the \(i \)-th bit is 1 is simply
\[
1 - e^{-\frac{km}{n}}.
\]

Probability of false positive = \((1 - e^{-\frac{km}{n}})^k \)
Strongly 2-wise Universal Hash Function

- Mapping set of keys $U=\{0,1,2,\ldots,m-1\}$ to range $R=\{0,1,2,\ldots,n-1\}$

 $- H=\{h_{a,b}=[(ax+b) \mod p] \mod n\}$

- $p \geq m$ is a prime, $1 \leq a \leq p-1$, $0 \leq b \leq p-1$

- Easy to compute and store: $O(1)$

- Satisfies (almost) for all x, y, r, s, $x \neq y$

\[
\text{Prob}_{h\in H}(h(x) = r \land h(y) = s) = \frac{1}{n^2}
\]
Strongly 3-wise Universal Hash Function

• Mapping set of keys $U=\{0,1,2,\ldots,m-1\}$ to range $R=\{0,1,2,\ldots,n-1\}$

 $- H=\{h_{a,b} = [(ax^2+bx+c) \mod p] \mod n\}$

• $p \geq m$ is a prime, $1 \leq a \leq p-1$, $0 \leq b,c \leq p-1$

• Easy to compute and store: $O(1)$

• Satisfies (almost) $x, y, z, x \neq y \neq z$

\[
\Pr_{h \in H}(h(x) = r \land h(y) = s \land h(z) = t) = \frac{1}{n^3}
\]
Strongly 2-Universal

• Mapping set of keys $U=[0,1,2,...,p-1]$ to range $R=[0,1,2,...,p-1]$
 $H=\{h_{a,b}=(ax+b) \mod p\}, \ 0<=a,b<=p-1$

• Fix $x, y, x \neq y$.
 – What is $\text{Prob}_{h \in H}(h(x) = r \land h(y) = s)$?
 – Number of hash functions p^2
 – Number of solutions for “a” and “b”=1