Interactive Clustering

Barna Saha

Clustering

- n points k clusters
- Clustering Oracle Knows the ground truth clustering or can solve the clustering under some optimization rule
- A Query to a Clustering Oracle: Are points A and B in the same cluster?

Query Complexity?

Learning over Noisy Data

Learn a classifier or find clusters over noisy/uncertain data

Learning over Noisy Data

Learn a classifier or find clusters over noisy／uncertain data

Noise comes from inherent data errors／missing attributes－clustering collaboration network obtained from DBLP could be erroneous．
 Computers \＆Electrical Engineering 40（1）：203－215（2014）
■［j20］目 乌 Qingila Huang，Kai Shuang，Peng Xu，Jian Li，Xu Liu，Sen Su：Prediction－based Dynamic Resource Scheduling for Virtualized Cloud Systems． JNW 9（2）：375－383（2014）

■［j218］目 气 George－Othon Glentis，Kexin Zhao，Andreas Jakobsson，Habti Abeida，Jian Li：SAR imaging via efficient implementations of sparse ML approaches．Signal Processing 95：15－26（2014）

Further Applications

- Linking Census Records
- Public Health
- Web search
- Comparison shopping
- Spam Detection
- Machine Reading
- IP Aliasing
-

Query complexity of optimal strategy?

Clustering: n points k clusters

- Sufficient: $n k$
- Compare any element with all the previously formed clusters
- Any item needs to be queried at most k times before it is assigned to a cluster

Query complexity of optimal strategy?

Clustering: n points k clusters

- Sufficient: nk
- Compare any element with all the previously formed clusters
- Any item needs to be queried at most k times before it is assigned to a cluster
- Necessary: $\Omega(n k) \quad$ Davidson, Khanna, Milo, Roy, 2014
- Deterministic Algorithms: Needs to query $\Theta(n)$ points at least $k-1$ times
- Randomized Algorithms (find the clustering exactly whp): Same lower bound applies

Faulty Oracle

- Each query answer can be independently wrong with probability p (when the points are in same cluster) or $1-q$ (when in different clusters)

Faulty Oracle

- Each query answer can be independently wrong with probability p (when the points are in same cluster) or $1-q$ (when in different clusters)

Faulty Oracle

- Each query answer can be independently wrong with probability p (when the points are in same cluster) or $1-q$ (when in different clusters)
- Resampling is not allowed

1) It is not theoretically interesting 2) Also not practical (only 20% reduction via resampling, Gruenheid et al. 2015, error increases upon aggregation Prelec et al. (Nature 2017))

Faulty Oracle: No Resampling

- Find seed nodes for each cluster
- If we can find $24 \log n /(1-2 p)^{2}$ seed nodes from each cluster then we are done! [Why?]

Faulty Oracle: How to find seed nodes?

- Let $\mathrm{N}=\mathrm{O}\left(\mathrm{k}^{2} \log \mathrm{n} /(1-2 p)^{4}\right)$
- Select N nodes and ask all possible pairwise queries among these nodes.
- Run correlation clustering algorithm in this small set of nodes
- Each cluster returned by the correlation clustering that has size at least $24 \log n /(1-2 p)^{2}$ act as a seed

Faulty Oracle: How to find seed nodes?

- Let $\mathrm{N}=\mathrm{O}\left(\mathrm{k}^{2} \log \mathrm{n} /(1-2 p)^{4}\right)$
- Select N nodes and ask all possible pairwise queries among these nodes.
- Run correlation clustering algorithm in this small set of nodes
- Each cluster returned by the correlation clustering that has size at least $24 \log n /(1-2 p)^{2}$ act as a seed

Some intuition on the analysis: If we know all the query results, correlation clustering gives the maximum likelihood estimator.
Moreover, it is an instance of correlation clustering where errors are randomwe know how to solve it!

