Locality Sensitive Hashing

Barna Saha

Outline

Approximate Near Neighbor Search

Near Neighbor Problem

Figure Given a set of points V, a distance metric d and a query point q, is there any point x close to query point q: $d(x,q) \le R$.

Easy in low dimension. Complexity increases exponentially in dimension.

Approximate Near Neighbor Problem

▶ Given a set of points V, a distance metric d and a query point q, the (c,R)-approximate near neighbor problem requires if there exists a point x such that $d(x,q) \leq R$, then one must find a point x' such that $d(x',q) \leq cR$ with probability $> (1 - \delta)$ for a given $\delta > 0$.

The technique that we will be using to solve it is Locality Sensitive Hashing

Locality Sensitive Hashing

A family of hash functions \mathcal{H} that is said to be (c, R, p_1, p_2) -sensitive for a distance metric d, when:

- 1. $\Pr_{h\sim\mathcal{H}}[h(x)=h(y)]\geq p_1$ for all x and y such that $d(x,y)\leq R$
- 2. $\Pr_{h\sim\mathcal{H}}[h(x)=h(y)]\leq p_2$ for all x and y such that d(x,y)>cR

For \mathcal{H} to be LSH $p_1 > p_2$.

Locality Sensitive Hashing

Example

Let $V \subseteq [0,1]^n$ and d(x,y) = Hamming distance between x and y. Let R << n and cR << n, define $\mathcal{H} = \{h_1, h_2, ..., h_n\}$ such that $h_i(x) = x_i$. $p_1 \ge 1 - \frac{R}{n}$ and $p_2 \le 1 - \frac{cR}{n}$.

- ▶ LSH \mathcal{H} : (c, R, p_1, p_2) -sensitive
- ► $h_{i,j} \sim \mathcal{H}, i \in [1, K], j \in [1, L]$
- ▶ define $g_i = \langle h_{1,j}, h_{2,j}, ..., h_{K,j} \rangle$ for all $j \in [1, L]$

```
Preprocessing For all x \in V and for all j \in [L], add x to bucket_j(g_j(x)).

Time=O(NLK)

Query(q)
```

- for j=1,2,..,L
- for all $x \in bucket_j(g_j(q))$
- if $d(x,q) \le cR$ then return x
- return none

Time=O(KL + NLF) where F is the probability for any given j that a point x is hashed to the same bucket by g_j as q but d(x,q) > cR.

How much is F? Given x and y with d(x, y) > cr,

$$F = \Prig[g_j(x) = g_j(y) \mid d(x,y) > cRig] \ \prod_{j=1}^K \Prig[h_{i,j}(x) = h_{i,j}(y) \mid d(x,y) > cRig] \leq p_2^k$$

Hence query time $O(KL + NLp_2^k)$.

Success Probability

$$\Pr[\exists j \text{ s.t.} g_j(x) = g_j(q) | d(x,q) < cR]$$

$$\geq \Pr[\exists j \text{ s.t.} g_j(x) = g_j(q) | d(x,q) < \lfloor R \rfloor$$

$$\geq 1 - (1 - p_1^K)^L$$

How to choose K and L

- > set $L=\frac{1}{p_1^K}$. Success probability becomes $1-\frac{1}{e}$. If $\delta=\frac{1}{e}$ -happy!
- ▶ To minimize query cost : O(L): $Np_2^K = 1$

We have

$$N = rac{1}{p_2^k} = \left(rac{1}{p_1}
ight)^{krac{\log 1/p_2}{\log 1/p_1}} = L^{rac{\log 1/p_2}{\log 1/p_1}}$$

We have $L=N^{
ho}$, $ho=rac{\log 1/p_1}{\log 1/p_2}$

Example

 $p_1 = 0.1, p_2 = 0.01$ leads to $\rho = 0.5, L = \sqrt{N}, K = O(\log N)$. Preprocessing time= $O(N\sqrt{N}\log N)$, Query time= $O(\sqrt{N}\log N)$.

