Locality Sensitive Hashing

Barna Saha
Outline

Approximate Near Neighbor Search
Near Neighbor Problem

- Given a set of points V, a distance metric d and a query point q, is there any point x close to query point q: $d(x, q) \leq R$.

Easy in low dimension. Complexity increases exponentially in dimension.
Given a set of points V, a distance metric d and a query point q, the (c, R)-approximate near neighbor problem requires if there exists a point x such that $d(x, q) \leq R$, then one must find a point x' such that $d(x', q) \leq cR$ with probability $> (1 - \delta)$ for a given $\delta > 0$.

The technique that we will be using to solve it is **Locality Sensitive Hashing**
A family of hash functions \mathcal{H} that is said to be (c, R, p_1, p_2)-sensitive for a distance metric d, when:

1. $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \geq p_1$ for all x and y such that $d(x, y) \leq R$
2. $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq p_2$ for all x and y such that $d(x, y) > cR$

For \mathcal{H} to be LSH $p_1 > p_2$.

Locality Sensitive Hashing
Example
Let $V \subseteq [0, 1]^n$ and $d(x, y) =$ Hamming distance between x and y. Let $R << n$ and $cR << n$, define $\mathcal{H} = \{h_1, h_2, ..., h_n\}$ such that $h_i(x) = x_i$. $p_1 \geq 1 - \frac{R}{n}$ and $p_2 \leq 1 - \frac{cR}{n}$.
Locality Sensitive Hashing for solving (c,R)-NN problem

- LSH $\mathcal{H} : (c, R, p_1, p_2)$-sensitive
- $h_{i,j} \sim \mathcal{H}, \ i \in [1, K], j \in [1, L]$
- Define $g_j = \langle h_{1,j}, h_{2,j}, \ldots, h_{K,j} \rangle$ for all $j \in [1, L]$
Locality Sensitive Hashing for solving \((c,R)-\text{NN}\) problem

Preprocessing For all \(x \in V\) and for all \(j \in [L]\), add \(x\) to \(\text{bucket}_j(g_j(x))\).

Time\(=O(NLK)\)

Query\((q)\)

- for \(j=1,2,\ldots,L\)
- for all \(x \in \text{bucket}_j(g_j(q))\)
- if \(d(x,q) \leq cR\) then return \(x\)
- return none

Time\(=O(KL + NFL)\) where \(F\) is the probability for any given \(j\) that a point \(x\) is hashed to the same bucket by \(g_j\) as \(q\) but \(d(x,q) > cR\).
How much is F?
Given x and y with $d(x, y) > cr$,

$$F = \Pr[g_j(x) = g_j(y) \mid d(x, y) > cR]$$

$$\prod_{j=1}^{K} \Pr[h_{i,j}(x) = h_{i,j}(y) \mid d(x, y) > cR] \leq p_2^k$$

Hence query time $O(KL + NLp_2^k)$.
Success Probability

\[
\Pr \left[\exists j \quad \text{s.t.} \quad g_j(x) = g_j(q) \mid d(x, q) < cR \right] \\
\geq \Pr \left[\exists j \quad \text{s.t.} \quad g_j(x) = g_j(q) \mid d(x, q) < \left\lfloor R \right\rfloor \right] \\
\geq 1 - (1 - p_1^K)^L
\]
Locality Sensitive Hashing for solving (c,R)-NN problem

How to choose K and L

- set $L = \frac{1}{p_1^K}$. Success probability becomes $1 - \frac{1}{e}$. If $\delta = \frac{1}{e}$-happy!

- To minimize query cost: $O(L): Np_2^K = 1$

We have

$$N = \frac{1}{p_2^k} = \left(\frac{1}{p_1} \right)^{k \frac{\log 1/p_2}{\log 1/p_1}} = L^{\frac{\log 1/p_2}{\log 1/p_1}}$$

We have $L = N^\rho$, $\rho = \frac{\log 1/p_1}{\log 1/p_2}$

Example

$p_1 = 0.1, p_2 = 0.01$ leads to $\rho = 0.5, L = \sqrt{N}, K = O(\log N)$. Preprocessing time $= O(N\sqrt{N} \log N)$, Query time $= O(\sqrt{N} \log N)$.