Introduction

Rigorous treatment of type safety.

1. Formal definition of type safety.
2. Proving a language safe.
3. Relation to informal notions of safety.

MinML, the E. Coli of PL's

We'll study MinML, a tiny fragment of ML.

- Integers and booleans.
- (Recursive) functions.

Abstract Syntax of MinML

The types of MinML are inductively defined by these rules:

\[
\text{int type \quad bool type}
\]

\[
\tau_1 \text{ type} \quad \tau_2 \text{ type}
\]

\[
\tau_1 \rightarrow \tau_2 \text{ type}
\]
Abstract Syntax of MinML

The expressions of MinML are inductively defined by these rules:

- \(\text{number} \)
- \(\text{var} \)
- \(\text{true expr} \)
- \(\text{false expr} \)
- \(\text{op \, e_1 \, \ldots \, e_n \, \text{expr}} \)
- \(\text{if \, \text{then} \, e_1 \, \text{else} \, e_2 \, \text{expr}} \)
- \(\text{fun} \, (x: \tau_f) : \tau_g \, \text{is} \, e \, \text{end} \)
- \(\text{apply} (e_f, e_g) \)

Abstract Syntax of MinML

A MinML program is simply an expression:

\[\text{prog} \]

In MinML execution of a program is evaluation of an expression, so there is no strong distinction between programs and expressions.

Static Semantics

The static semantics, or type system, imposes context-sensitive restrictions on the formation of expressions.

- Distinguishes well-typed from ill-typed expressions.
- Type constraints eliminate prima facie non-sensical programs.

The static semantics is inductively defined by a set of typing rules.

Typing Judgements

A typing judgement, or typing assertion, is a triple

\[\Gamma \vdash e : \tau \]

with three parts

1. A type assignment, or type context, \(\Gamma \) that assigns types to some finite set of variables. Think of \(\Gamma \) as a "symbol table".
2. An expression \(e \) whose free variables are given types by \(\Gamma \).
3. A type \(\tau \) for the expression \(e \).
Type Assignments

Formally, a type assignment is a finite function
\[\Gamma : \text{Variables} \rightarrow \text{Types} \]
That is, \(\Gamma \) is a function whose domain \(\text{dom}(\Gamma) \) is a finite set of variables.

We write \(\Gamma, x : \tau \), or \(\Gamma[x : \tau] \), for the function \(\Gamma' \) defined as follows:
\[\Gamma'(y) = \begin{cases} \tau & \text{if } x = y \\ \Gamma(y) & \text{if } x \neq y \end{cases} \]

Typing Rules

The primitive operations have the expected typing rules:
\[\Gamma \vdash e_1 : \text{int}, \Gamma \vdash e_2 : \text{int} \quad \Gamma \vdash e_1 + e_2 : \text{int} \]
\[\Gamma \vdash e_1 : \text{int}, \Gamma \vdash e_2 : \text{int} \quad \Gamma \vdash \text{eq}(e_1, e_2) : \text{bool} \]

(and similarly for the others).

Typing Rules

A variable has whatever type \(\Gamma \) assigns to it:
\[\Gamma \vdash x : \Gamma(x) \]

The constants have the evident types:
\[\Gamma \vdash \text{true} : \text{bool} \quad \Gamma \vdash \text{false} : \text{bool} \]

Typing Rules

Both “branches” of a conditional must have the same type!
\[\Gamma \vdash e : \text{bool}, \Gamma \vdash e_1 : \tau, \Gamma \vdash e_2 : \tau \]
\[\Gamma \vdash \text{if} \, e \, \text{then} \, e_1 \, \text{else} \, e_2 : \tau \]

Intuitively, we cannot predict the outcome of the test (in general) so we must insist that both results have the same type. Otherwise we could not assign a unique type to the conditional.

Typing Rules

Functions may only be applied to arguments in their domain:
\[\Gamma \vdash e_1 : \tau_1 \rightarrow \tau, \Gamma \vdash e_2 : \tau_2 \quad \Gamma \vdash \text{apply}(e_1, e_2) : \tau \]

The result type is the co-domain (range) of the function.

Typing Rules

Type checking recursive functions:
\[\Gamma \vdash \text{fun} \, f \, (x : \tau_1) : \tau_2 \text{ is end} : \tau \rightarrow \tau_2 \]

We tacitly assume that \(\{f, x\} \cap \text{dom}(\Gamma) = \emptyset \). This is always possible by our conventions on binding operators.
Typing Rules

Type checking a recursive function is tricky! We assume that:

1. the function has the specified domain and range types, and
2. the argument has the specified domain type.

We then check that the body has the range type under these assumptions.

If the assumptions are consistent, the function is type correct, otherwise not.

Well-Typed and Ill-Typed Expressions

An expression e is well-typed, or typable, in a context Γ iff there exists a type τ such that $\Gamma \vdash e : \tau$.

If there is no τ such that $\Gamma \vdash e : \tau$, then e is ill-typed, or untypable, in context Γ.

Typing Example

Consider the following expression f:

```
fun f(n:int):int is if n=0 then 1 else n * f(n-1) end
```

Proposition 1

The expression f has type int→int.

To prove this, we must show that $\emptyset \vdash f : \text{int} \rightarrow \text{int}$ is a valid typing judgement according to the rules above.

Typing Example

```
f: int → int, n: int ⊢ n=0 : bool because
f: int → int, n: int ⊢ n: int
f: int → int, n: int ⊢ 0: int
f: int → int, n: int ⊢ 1: int is immediate.
```

Typing Example

```
f: int → int, n: int ⊢ n*f(n-1) : int because
f: int → int, n: int ⊢ n=0 : bool
f: int → int, n: int ⊢ 1 : int
f: int → int, n: int ⊢ n*f(n-1) : int
```

Typing Example

```
f: int → int, n: int ⊢ n*f(n-1) : int because
f: int → int, n: int ⊢ n: int
f: int → int, n: int ⊢ f(n-1) : int
```

The first case is immediate, the second requires a bit more work.
Type Checking

How does the type checker find typing proofs?

Important fact: the typing rules are **syntax-directed** — there is one rule per expression form.

Therefore the checker can invert the typing rules and work backwards towards the proof, just as we did above.

For example, if the expression is a function, the only possible proof is one that applies the function typing rule. So we work backwards from there.

Type Checking

Formally, we prove that the three-place relation \(\Gamma \vdash e : \tau \) is a partial function of \(\Gamma \) and \(e \).

That is, if \(\Gamma \vdash e : \tau_1 \) and \(\Gamma \vdash e : \tau_2 \), then \(\tau_1 = \tau_2 \).

This is proved by induction on the structure of \(e \) (exercise).

For homework you will implement this style of type checker.

Typing Example

This completes the proof! It’s rather tedious to do by hand, but what’s nice is that there are precise rules to fall back on if you get stuck.

In practice we use computers to find typing proofs. This is the job of a **type checker**:

Given \(\Gamma \), \(e \), and \(\tau \), is there a derivation of \(\Gamma \vdash e : \tau \) according to the typing rules?

This is called **type synthesis** because we synthesize the unique (if it exists) type of \(e \) relative to \(\Gamma \).

Properties of Typing

Theorem 2 (Inversion)

The typing rules are necessary, as well as sufficient.

1. If \(\Gamma \vdash x : \tau \), then \(\Gamma(x) = \tau \).
2. If \(\Gamma \vdash n : \tau \), then \(\tau = \text{int} \).
3. If \(\Gamma \vdash \text{true} : \tau \), then \(\tau = \text{bool} \), and similarly for \(\text{false} \).
4. If \(\Gamma \vdash (e_1, e_2) : \tau \), then \(\tau = \text{int} \) and \(\Gamma \vdash e_1 : \text{int} \) and \(\Gamma \vdash e_2 : \text{int} \).
5. If \(\Gamma \vdash \text{if} e \text{ then } e_1 \text{ else } e_2 : \tau \), then \(\Gamma \vdash e : \text{bool} \), \(\Gamma \vdash e_1 : \tau \) and \(\Gamma \vdash e_2 : \tau \).
6. If \(\Gamma \vdash \text{fun } f (x : \tau_1) : \tau_2 \text{ in } e : \tau \), then \(\tau = \tau_1 \rightarrow \tau_2 \) and then \(\Gamma[f[\tau_1 \rightarrow \tau_2][x : \tau]] \vdash e : \tau_2 \).
7. If \(\Gamma \vdash \text{apply}(e_1, e_2) : \tau \), then there exists \(\tau_2 \) such that \(\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \) and \(\Gamma \vdash e_2 : \tau_1 \).

Proof by **rule induction** on the typing rules.
Induction on Typing

To show that some property \(P(\Gamma, e, \tau) \) holds whenever \(\Gamma \vdash e : \tau \), it is enough to show

- \(P(\Gamma, x, \Gamma(x)) \)
- \(P(\Gamma, n, \text{int}) \)
- \(P(\Gamma, \text{true, bool}) \)
- \(P(\Gamma, \text{false, bool}) \)
- if \(P(\Gamma, e_1, \text{int}) \) and \(P(\Gamma, e_2, \text{int}) \), then \(P(\Gamma, e_1 \times c_1, e_2, \text{int}) \) (and similarly for the other primitive operators)
- if \(P(\Gamma, e, \text{bool}) \), \(P(\Gamma, e_1, \tau) \), and \(P(\Gamma, e_2, \tau) \), then \(P(\Gamma, \text{if } e \text{ then } e_1 \text{ else } e_2, \tau) \)
- if \(P(\Gamma, e_1, \tau_1 \rightarrow \tau_2) \) and \(P(\Gamma, e_2, \tau_2) \), then \(P(\Gamma, \text{apply}(e_1, e_2), \tau) \)
- if \(P(\Gamma, \text{fun } f(x: \tau_1) : \tau_2) \), \(P(\Gamma, f\text{as } f(x: \tau_1); \tau_2) \) is true, \(\tau \) and \(\tau_1 \rightarrow \tau_2 \).

Properties of Typing

Theorem 3 (Weakening)
If \(\Gamma \vdash e : \tau \) and \(\Gamma' \supseteq \Gamma \), then \(\Gamma' \vdash e : \tau \).

Intuitively, “junk” in the symbol table doesn’t matter. We may always \(\alpha \)-convert expressions to “steer around” the junk.

The proof is by induction on typing.

Properties of Typing

Theorem 4 (Substitution)
If \(\Gamma \vdash x : \tau \) and \(\Gamma \vdash e : \tau' \), then \(\Gamma \vdash \{x/e\}e' : \tau' \).

Intuitively, we may “click in” the second derivation wherever the type of \(x \) is required in the first derivation.

Formally, we prove this by rule induction on the first typing judgement.

- Consider each rule in turn.

- Show in each case that substitution preserves type.

Summary

1. The static semantics of MinML is specified by an inductive definition of the typing judgement \(\Gamma \vdash e : \tau \).

2. Properties of the type system may be proved by induction on typing derivations.