Type Conversion

Arithmetic subtyping requires type conversion.

- Arguments to floating point operations check for integers.
- Integers are silently converted to floating point.

Costly to implement directly!

Type Conversion

Observation: conversions can be made at compile time.

- Mixed-mode expressions rely on subsumption during type checking.
- We can detect statically where subsumption is used.

Another strategy is to use coercions.

- For each subtyping $\sigma <: \tau$, then there is a (unique) coercion function $\sigma \rightarrow \tau$.
- Uses of subsumption insert coercion from sub- to super-type.

Coherence

Issue: there might be many (different?) ways to insert coercions!

- Typing rules are not syntax-directed.
- Each typing derivation determines a different program.

Coherence of subtyping means that all ways are "equivalent".

Consider the expression $\sin(3)$.
We may "read" this in two ways:

1. Convert 3 to floating point, then apply \sin to the result.
2. Convert \sin to the function that, when applied, converts its integer argument to floating point, then applies floating point \sin to the result.

These are equivalent, but they are not identical.
Coercion Interpretation

Assess with each subtype relation a coercion mapping the sub- to the super-type:

\[\sigma \leq_{\tau} \tau \rightarrow v \]

The expression \(v \) is a value of type \(\sigma \rightarrow \tau \).

Coercion Interpretation of Subtyping

1. Primitive conversion: to_float.
2. Identity: id\(\tau \) in \(\tau \rightarrow v \).
3. Composition: \(v_1 \circ v_2 = \text{fn } x : \tau \rightarrow \text{fn } x : \tau \rightarrow \tau (f (v_2 (x))) \).
4. Functions: \(v_1 \rightarrow v_2 = \text{fn } f : \tau \rightarrow \sigma_2 \rightarrow \text{fn } x : \tau \rightarrow \tau (f (v_2 (x))) \).

Subsumption Elimination

Subsumption inserts coercion function:

\[
\frac{\Gamma \vdash e : \sigma \rightarrow v}{\Gamma \vdash e : \sigma \leq_{\tau} \tau \rightarrow v (v (e))}
\]

The remaining rules simply compose the translations. For example,

\[
\frac{\Gamma \vdash e_1 : \tau_1 \rightarrow \tau \rightarrow \tau_2 \rightarrow \tau \rightarrow v}{\Gamma \vdash e (e_1 (e_2)) : \tau \rightarrow v (v (e_1 (e_2)))}
\]

Coercion Interpretation of Subtyping

1. If \(\sigma \leq_{\tau} \tau \rightarrow v \), then \(\Gamma \vdash v : \sigma_{\tau} \rightarrow \tau \).
2. If \(\sigma \leq_{\tau} \tau \rightarrow v_1 \) and \(\sigma \leq_{\tau} \tau \rightarrow v_2 \), then \(\Gamma \vdash v_1 = v_2 : \sigma_{\tau} \rightarrow \tau \).

That is, any two coercions from \(\tau \) to \(\tau' \) are equivalent.

Subsumption Elimination

1. If \(\Gamma \vdash e : \tau \rightarrow e' \), then \(\Gamma \vdash e' : \tau \).
2. If \(\Gamma \vdash e : \tau \rightarrow e_1 \) and \(\Gamma \vdash e : \tau \rightarrow e_2 \), then \(\Gamma \vdash e_1 = e_2 : \tau \).

The proof of the first part is a straightforward induction on derivations. The second is more difficult. Both are omitted here.
Coercion Interpretation

Where else might this method apply?

- Tuple subtyping: truncate to supertype.
- Record subtyping: drop "extra" fields.

Record Subtyping

The width subtyping axiom states that “fatter” records are a subtype of “skinnier” ones:

\[m \geq n \]

\[\{l_1: \tau_1, \ldots, l_m: \tau_m\} \subseteq \{l_1: \tau_1, \ldots, l_n: \tau_n\} \]

In other words, a wider record may be provided where a narrower record with the same fields is required.

Dynamic Semantics of Records

In the presence of subtyping the type does not reveal the position of the fields!

- Fields might have been dropped anywhere.
- Can always “weaken” the type to hide additional fields.

Coercion Interpretation

Not necessary for tuples, but useful for records.

- Tuples: projection operations typically are not affected by extra components at the end.
- Records: efficient field selection relies on pre-computing position of each field.

Dynamic Semantics of Records

This suggests that we must search for the lth field on each access.

- Logarithmic in the number of fields using a balanced tree.
- Non-trivial constant factors.

Can we avoid run-time search?
Mutable Records

A compromise solution:

- Represent records as a pair:
 - A dictionary (view, dope vector, or access vector) that determines the position of the \(i\)th field.
 - A data array that records the contents of the fields.

- Coercion truncates the dictionary, but not the data array so that sharing is preserved.

Coercion Interpretation

The coercions are defined as follows:

\[
\begin{align*}
\text{drop}_{m,n,l,\sigma} & \quad = \quad \text{fn} \; x : \{l_1: \sigma_1, \ldots, l_m: \sigma_m\} \in \{l_1: x.l_1, \ldots, l_n: x.l_n\} \quad \text{end} \\
\text{copy}_{m,n,\sigma,v} & \quad = \quad \text{fn} \; x : \{l_1: \sigma_1, \ldots, l_n: \sigma_n\} \in \{l_1: v_1(x.l_1), \ldots, l_n: v_n(x.l_n)\} \quad \text{end}
\end{align*}
\]

Coercion to the rescue!

- If records are immutable, we can coerce records by copying.
- Type now reveals the position of each field.

But only if record fields are immutable!

- Otherwise sharing is lost by copying.

Avoiding Search

Coercions to the rescue!

- If records are immutable, we can coerce records by copying.
- Type now reveals the position of each field.

But only if record fields are immutable!

- Otherwise sharing is lost by copying.

What if records are mutable?

- Coercion by copying is precluded.
- Must retain "hidden" fields.

All are issues of aliasing, multiple active views of the same mutable data structure.

Dictionaries

Represent \(\{l_1:v_1, \ldots, l_n:v_n\}\) as a pair

\[
\{l_1:j_1, \ldots, l_n:j_n\}, v_1 \cdots v_n
\]

where, initially, \(j_i = i\) for \(1 \leq i \leq n\).

Translate \(v.l\) into

\[
\text{snd}(v).\text{fst}(v).l
\]

which fetches the index, and then the value, of field \(l\).

(This has to be a primitive!)
Dictionaries

Coercion copies dictionary, but leaves data array intact.

- Maintains constant-time access to record components.
- Preserves sharing of (mutable) data.

Specifically, if $\sigma = \{l_1:s_1, \ldots, l_n:s_n\}$ and $\tau = \{l_1:int, \ldots, l_n:int\}$, then

$$\text{drop}_{m,n,l,\sigma} = \text{fn } x \text{ in } (\text{drop}_{m,n,l,\sigma}(\text{fst}(x)), \text{snd}(x)) \text{ end.}$$

The dictionary is coerced, but the data is left intact.

Summary

Coercions support efficient subtyping.

- Avoids run-time type checks.
- Applicable only indirectly to the mutable case.

Dictionaries

Similar issues arise in OOP:

- The dictionary is called the _vtable_.
- The record type is determined by the class (defines methods, fields).
- Coercion is often limited to implicit truncation (position matters).