Practical Foundations for Programming Languages

Robert Harper
Carnegie Mellon University

Spring, 2009

[Draft of January 21, 2009 at 12:59pm.]
Copyright © 2009 by Robert Harper.

All Rights Reserved.

The electronic version of this work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
Preface

This is a working draft of a book on the foundations of programming languages. The central organizing principle of the book is that programming language features may be seen as manifestations of an underlying type structure that governs its syntax and semantics. The emphasis, therefore, is on the concept of type, which codifies and organizes the computational universe in much the same way that the concept of set may be seen as an organizing principle for the mathematical universe. The purpose of this book is to explain this remark.

This is very much a work in progress, with major revisions made nearly every day. This means that there may be internal inconsistencies as revisions to one part of the book invalidate material at another part. Please bear this in mind!

Corrections, comments, and suggestions are most welcome, and should be sent to the author at rwh@cs.cmu.edu.
Contents

Preface iii

I Judgements and Rules 1

1 Inductive Definitions 3
 1.1 Objects and Judgements 3
 1.2 Inference Rules .. 4
 1.3 Derivations ... 5
 1.4 Rule Induction ... 7
 1.5 Iterated and Simultaneous Inductive Definitions 10
 1.6 Defining Functions by Rules 11
 1.7 Modes .. 12
 1.8 Foundations ... 13
 1.9 Exercises .. 15

2 Hypothetical Judgements 17
 2.1 Derivability ... 17
 2.2 Admissibility .. 19
 2.3 Hypothetical Inductive Definitions 21
 2.4 Exercises .. 23

3 Generic Judgements 25
 3.1 Objects and Parameters 25
 3.2 Rule Schemes .. 26
 3.3 Uniform Genericity 27
 3.4 Non-Uniform Genericity 29
 3.5 Generic Inductive Definitions 30
 3.6 Exercises .. 31
CONTENTS

4 Transition Systems 33
 4.1 Transition Systems 33
 4.2 Iterated Transition 34
 4.3 Simulation and Bisimulation 35
 4.4 Exercises ... 36

II Levels of Syntax 37

5 Basic Syntactic Objects 39
 5.1 Symbols ... 39
 5.2 Strings Over An Alphabet 39
 5.3 Abstract Syntax Trees 41
 5.3.1 Structural Induction 41
 5.3.2 Variables and Substitution 42
 5.4 Exercises .. 43

6 Binding and Scope 45
 6.1 Abstract Binding Trees 46
 6.1.1 Structural Induction With Binding and Scope .. 47
 6.1.2 Renaming of Bound Names 48
 6.1.3 Capture-Avoiding Substitution 49
 6.2 Generic Judgements Over ABT’s 50
 6.3 Exercises .. 51

7 Concrete Syntax 53
 7.1 Lexical Structure 53
 7.2 Context-Free Grammars 56
 7.3 Grammatical Structure 57
 7.4 Ambiguity ... 59
 7.5 Exercises .. 60

8 Abstract Syntax 61
 8.1 Abstract Syntax Trees 62
 8.2 Parsing Into Abstract Syntax Trees 63
 8.3 Parsing Into Abstract Binding Trees 65
 8.4 Syntactic Conventions 67
 8.5 Exercises .. 68

12:59PM DRAFT JANUARY 21, 2009
CONTENTS

III Static and Dynamic Semantics 69

9 Static Semantics 71
 9.1 Type System ... 72
 9.2 Structural Properties 74
 9.3 Exercises ... 75

10 Dynamic Semantics 77
 10.1 Structural Semantics 77
 10.2 Contextual Semantics 79
 10.3 Equational Semantics 82
 10.4 Exercises ... 85

11 Type Safety 87
 11.1 Preservation ... 88
 11.2 Progress ... 88
 11.3 Run-Time Errors 90
 11.4 Exercises ... 92

12 Evaluation Semantics 93
 12.1 Evaluation Semantics 93
 12.2 Relating Transition and Evaluation Semantics 94
 12.3 Type Safety, Revisited 95
 12.4 Cost Semantics 97
 12.5 Environment Semantics 98
 12.6 Exercises ... 99

IV Function Types 101

13 Function Definitions and Values 103
 13.1 First-Order Functions 104
 13.2 Higher-Order Functions 105
 13.3 Evaluation Semantics and Definitional Equivalence ... 107
 13.4 Static and Dynamic Binding 108
 13.5 Exercises ... 111

14 Gödel’s System T 113
 14.1 Statics ... 113
 14.2 Dynamics ... 115
 14.3 Definability ... 116
CONTENTS

14.4 Non-Definability ... 118
14.5 Exercises ... 119

15 Plotkin’s PCF .. 121
 15.1 Statics ... 123
 15.2 Dynamics .. 124
 15.3 Definability ... 125
 15.4 Variations .. 127
 15.5 Exercises ... 128

V Finite Data Types ... 129

16 Product Types .. 131
 16.1 Nullary and Binary Products 132
 16.2 Finite Products .. 133
 16.3 Mutual Recursion 135
 16.4 Exercises ... 136

17 Sum Types .. 137
 17.1 Binary and Nullary Sums 137
 17.2 Finite Sums ... 139
 17.3 Uses for Sum Types 140
 17.3.1 Void and Unit 141
 17.3.2 Booleans ... 141
 17.3.3 Enumerations 142
 17.3.4 Options .. 142
 17.4 Exercises ... 144

18 Pattern Matching ... 145
 18.1 A Pattern Language 146
 18.2 Pattern Matching 149
 18.3 Exhaustiveness and Redundancy 149
 18.4 Exercises ... 152

VI Infinite Data Types 153

19 Inductive and Co-Inductive Types 155
 19.1 Static Semantics 156
 19.1.1 Types and Operators 156

12:59PM DRAFT JANUARY 21, 2009
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.2</td>
<td>Expressions</td>
<td>157</td>
</tr>
<tr>
<td>19.2</td>
<td>Positive Type Operators</td>
<td>158</td>
</tr>
<tr>
<td>19.3</td>
<td>Dynamic Semantics</td>
<td>160</td>
</tr>
<tr>
<td>19.4</td>
<td>Fixed Point Properties</td>
<td>162</td>
</tr>
<tr>
<td>19.5</td>
<td>Exercises</td>
<td>164</td>
</tr>
<tr>
<td>20</td>
<td>Recursive Types</td>
<td>165</td>
</tr>
<tr>
<td>20.1</td>
<td>Recursive Type Equations</td>
<td>166</td>
</tr>
<tr>
<td>20.2</td>
<td>Recursive Data Structures</td>
<td>168</td>
</tr>
<tr>
<td>20.3</td>
<td>Self-Reference</td>
<td>170</td>
</tr>
<tr>
<td>20.4</td>
<td>Exercises</td>
<td>171</td>
</tr>
<tr>
<td>VII</td>
<td>Dynamic Types</td>
<td>173</td>
</tr>
<tr>
<td>21</td>
<td>The Untyped λ-Calculus</td>
<td>175</td>
</tr>
<tr>
<td>21.1</td>
<td>The λ-Calculus</td>
<td>175</td>
</tr>
<tr>
<td>21.2</td>
<td>Definitional Equivalence</td>
<td>176</td>
</tr>
<tr>
<td>21.3</td>
<td>Definability</td>
<td>177</td>
</tr>
<tr>
<td>21.4</td>
<td>Undecidability of Definitional Equivalence</td>
<td>179</td>
</tr>
<tr>
<td>21.5</td>
<td>Untyped Means Uni-Typed</td>
<td>181</td>
</tr>
<tr>
<td>21.6</td>
<td>Exercises</td>
<td>183</td>
</tr>
<tr>
<td>22</td>
<td>Dynamic Typing</td>
<td>185</td>
</tr>
<tr>
<td>22.1</td>
<td>Dynamically Typed PCF</td>
<td>185</td>
</tr>
<tr>
<td>22.2</td>
<td>Critique of Dynamic Typing</td>
<td>188</td>
</tr>
<tr>
<td>22.3</td>
<td>Hybrid Typing</td>
<td>189</td>
</tr>
<tr>
<td>22.4</td>
<td>Optimization of Dynamic Typing</td>
<td>191</td>
</tr>
<tr>
<td>22.5</td>
<td>Static “Versus” Dynamic Typing</td>
<td>193</td>
</tr>
<tr>
<td>22.6</td>
<td>Dynamic Typing From Recursive Types</td>
<td>195</td>
</tr>
<tr>
<td>22.7</td>
<td>Exercises</td>
<td>195</td>
</tr>
<tr>
<td>VIII</td>
<td>Polymorphism</td>
<td>197</td>
</tr>
<tr>
<td>23</td>
<td>Girard’s System F</td>
<td>199</td>
</tr>
<tr>
<td>23.1</td>
<td>System F</td>
<td>200</td>
</tr>
<tr>
<td>23.2</td>
<td>Polymorphic Definability</td>
<td>203</td>
</tr>
<tr>
<td>23.2.1</td>
<td>Products and Sums</td>
<td>203</td>
</tr>
<tr>
<td>23.2.2</td>
<td>Natural Numbers</td>
<td>204</td>
</tr>
<tr>
<td>23.2.3</td>
<td>Expressive Power</td>
<td>205</td>
</tr>
</tbody>
</table>
23.3 Exercises .. 206

24 Abstract Types .. 207
 24.1 Existential Types ... 208
 24.1.1 Static Semantics 208
 24.1.2 Dynamic Semantics 209
 24.1.3 Safety ... 209
 24.2 Data Abstraction Via Existentials 210
 24.3 Definability of Existentials 212
 24.4 Exercises .. 213

25 Constructors and Kinds 215
 25.1 Syntax .. 216
 25.2 Static Semantics ... 217
 25.2.1 Constructor Formation 217
 25.2.2 Expression Formation 218
 25.3 Definitional Equivalence 219
 25.4 Predicativity and Impredicativity, Revisited 219
 25.5 Exercises .. 221

26 Indexed Families of Types 223
 26.1 Type Families ... 223
 26.2 Exercises .. 223

IX Control Flow .. 225

27 Abstract Machine for Control 227
 27.1 Machine Definition 227
 27.2 Safety .. 229
 27.3 Correctness of the Control Machine 230
 27.3.1 Completeness 232
 27.3.2 Soundness ... 232
 27.4 Exercises .. 234

28 Exceptions .. 235
 28.1 Failures .. 235
 28.2 Exceptions .. 237
 28.3 Exercises .. 240
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Continuations</td>
<td>241</td>
</tr>
<tr>
<td>29.1</td>
<td>Informal Overview</td>
<td>242</td>
</tr>
<tr>
<td>29.2</td>
<td>Semantics of Continuations</td>
<td>244</td>
</tr>
<tr>
<td>29.3</td>
<td>Exercises</td>
<td>246</td>
</tr>
<tr>
<td>X</td>
<td>Propositions and Types</td>
<td>247</td>
</tr>
<tr>
<td>30</td>
<td>The Curry-Howard Correspondence</td>
<td>249</td>
</tr>
<tr>
<td>30.1</td>
<td>Constructive Logic</td>
<td>250</td>
</tr>
<tr>
<td>30.1.1</td>
<td>Constructive Semantics</td>
<td>250</td>
</tr>
<tr>
<td>30.1.2</td>
<td>Propositional Logic</td>
<td>252</td>
</tr>
<tr>
<td>30.1.3</td>
<td>Explicit Proofs</td>
<td>253</td>
</tr>
<tr>
<td>30.2</td>
<td>Propositions as Types</td>
<td>254</td>
</tr>
<tr>
<td>30.3</td>
<td>Exercises</td>
<td>256</td>
</tr>
<tr>
<td>31</td>
<td>Classical Proofs and Control Operators</td>
<td>257</td>
</tr>
<tr>
<td>31.1</td>
<td>Classical Logic</td>
<td>258</td>
</tr>
<tr>
<td>31.2</td>
<td>Exercises</td>
<td>262</td>
</tr>
<tr>
<td>XI</td>
<td>Subtyping</td>
<td>263</td>
</tr>
<tr>
<td>32</td>
<td>Subtyping</td>
<td>265</td>
</tr>
<tr>
<td>32.1</td>
<td>Subsumption</td>
<td>266</td>
</tr>
<tr>
<td>32.2</td>
<td>Varieties of Subtyping</td>
<td>266</td>
</tr>
<tr>
<td>32.2.1</td>
<td>Numbers</td>
<td>266</td>
</tr>
<tr>
<td>32.2.2</td>
<td>Products</td>
<td>268</td>
</tr>
<tr>
<td>32.2.3</td>
<td>Sums</td>
<td>269</td>
</tr>
<tr>
<td>32.3</td>
<td>Variance</td>
<td>270</td>
</tr>
<tr>
<td>32.3.1</td>
<td>Products</td>
<td>270</td>
</tr>
<tr>
<td>32.3.2</td>
<td>Sums</td>
<td>271</td>
</tr>
<tr>
<td>32.3.3</td>
<td>Functions</td>
<td>271</td>
</tr>
<tr>
<td>32.4</td>
<td>Safety for Subtyping</td>
<td>272</td>
</tr>
<tr>
<td>32.5</td>
<td>Recursive Subtyping</td>
<td>274</td>
</tr>
<tr>
<td>32.6</td>
<td>References</td>
<td>277</td>
</tr>
<tr>
<td>32.7</td>
<td>Exercises</td>
<td>277</td>
</tr>
<tr>
<td>33</td>
<td>Singleton and Dependent Kinds</td>
<td>279</td>
</tr>
<tr>
<td>33.1</td>
<td>Informal Overview</td>
<td>280</td>
</tr>
</tbody>
</table>
XII State

34 Fluid Binding
 34.1 Fluid Binding ... 286
 34.2 Symbol Generation 289
 34.3 Subtleties of Fluid Binding 291
 34.4 Exercises .. 293

35 Mutable Storage
 35.1 Reference Cells .. 297
 35.2 Safety .. 299
 35.3 Exercises .. 301
 35.4 References and Fluid Binding 301

36 Dynamic Classification
 36.1 Dynamic Classification 304
 36.2 Dynamic Classes 306
 36.3 From Classes to Classification 309
 36.4 Exercises .. 310

XIII Modalities

37 Computational Effects
 37.1 A Modality for Effects 315
 37.2 Imperative Programming 317
 37.3 Integrating Effects 318
 37.4 Exercises .. 319

38 Monadic Exceptions
 38.1 Monadic Exceptions 321
 38.2 Programming With Monadic Exceptions 323
 38.3 Exercises .. 324

39 Monadic State
 39.1 Storage Effects 326
 39.2 Integral versus Monadic Effects 328
 39.3 Exercises .. 330
CONTENTS

40 Comonads
- 40.1 A Comonadic Framework ... 332
- 40.2 Comonadic Effects .. 335
 - 40.2.1 Exceptions .. 335
 - 40.2.2 Fluid Binding .. 337
- 40.3 Exercises .. 339

XIV Laziness

41 Eagerness and Laziness
- 41.1 Eager and Lazy Dynamics ... 343
- 41.2 Eager and Lazy Types ... 346
- 41.3 Self-Reference ... 347
- 41.4 Suspension Type .. 348
- 41.5 Exercises .. 350

42 Lazy Evaluation
- 42.1 Call-By-Need ... 352
- 42.2 Lazy Data Structures .. 357
- 42.3 Suspensions By Need ... 358
- 42.4 Exercises .. 358

XV Parallelism

43 Speculative Parallelism
- 43.1 Speculative Execution ... 361
- 43.2 Speculative Parallelism .. 362
- 43.3 Exercises .. 364

44 Work-Efficient Parallelism
- 44.1 A Simple Parallel Language 365
- 44.2 Cost Semantics ... 368
- 44.3 Provable Implementations ... 372
- 44.4 Vector Parallelism .. 375
- 44.5 Exercises .. 377
CONTENTS

XVI Concurrency

45 Process Calculus 381
 45.1 Actions and Events 382
 45.2 Concurrent Interaction 383
 45.3 Replication 385
 45.4 Private Channels 386
 45.5 Synchronous Communication 388
 45.6 Polyadic Communication 389
 45.7 Mutable Cells as Processes 390
 45.8 Asynchronous Communication 391
 45.9 Definability of Input Choice 393
 45.10 Exercises 395

46 Concurrency 397
 46.1 Framework 397
 46.2 Input/Output 400
 46.3 Mutable Cells 400
 46.4 Futures 403
 46.5 Fork and Join 405
 46.6 Synchronization 406
 46.7 Exercises 408

XVII Modularity

47 Separate Compilation and Linking 411
 47.1 Linking and Substitution 411
 47.2 Exercises 411

48 Basic Modules 413

49 Parameterized Modules 415

XVIII Equivalence

50 Equational Reasoning for T 419
 50.1 Observational Equivalence 420
 50.2 Extensional Equivalence 424
 50.3 Extensional and Observational Equivalence Coincide 425
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.4 Some Laws of Equivalence</td>
<td>428</td>
</tr>
<tr>
<td>50.4.1 General Laws</td>
<td>428</td>
</tr>
<tr>
<td>50.4.2 Extensionality Laws</td>
<td>429</td>
</tr>
<tr>
<td>50.4.3 Induction Law</td>
<td>429</td>
</tr>
<tr>
<td>50.5 Exercises</td>
<td>429</td>
</tr>
<tr>
<td>51 Equational Reasoning for PCF</td>
<td>431</td>
</tr>
<tr>
<td>51.1 Observational Equivalence</td>
<td>431</td>
</tr>
<tr>
<td>51.2 Extensional Equivalence</td>
<td>432</td>
</tr>
<tr>
<td>51.3 Extensional and Observational Equivalence Coincide</td>
<td>433</td>
</tr>
<tr>
<td>51.4 Compactness</td>
<td>436</td>
</tr>
<tr>
<td>51.5 Lazy Natural Numbers</td>
<td>439</td>
</tr>
<tr>
<td>51.6 Exercises</td>
<td>441</td>
</tr>
<tr>
<td>52 Parametricity</td>
<td>443</td>
</tr>
<tr>
<td>52.1 Overview</td>
<td>443</td>
</tr>
<tr>
<td>52.2 Observational Equivalence</td>
<td>444</td>
</tr>
<tr>
<td>52.3 Logical Equivalence</td>
<td>446</td>
</tr>
<tr>
<td>52.4 Parametricity Properties</td>
<td>451</td>
</tr>
<tr>
<td>52.5 Exercises</td>
<td>455</td>
</tr>
<tr>
<td>53 Representation Independence</td>
<td>457</td>
</tr>
<tr>
<td>53.1 Bisimilarity of Packages</td>
<td>457</td>
</tr>
<tr>
<td>53.2 Two Representations of Queues</td>
<td>458</td>
</tr>
<tr>
<td>53.3 Exercises</td>
<td>461</td>
</tr>
<tr>
<td>XIX Working Drafts of Chapters</td>
<td>463</td>
</tr>
</tbody>
</table>
Part I

Judgements and Rules
Chapter 1

Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages. In this chapter we will develop the basic framework of inductive definitions, and give some examples of their use.

1.1 Objects and Judgements

We start with the notion of a judgement, or assertion, about an object of study. We shall make use of many forms of judgement, including examples such as these:

- \(n \text{ nat} \) \(n \) is a natural number
- \(n = n_1 + n_2 \) \(n \) is the sum of \(n_1 \) and \(n_2 \)
- \(a \text{ ast} \) \(a \) is an abstract syntax tree
- \(\tau \text{ type} \) \(\tau \) is a type
- \(e : \tau \) expression \(e \) has type \(\tau \)
- \(e \Downarrow v \) expression \(e \) has value \(v \)

A judgement states that one or more objects have a property or stand in some relation to one another. The property or relation itself is called a judgement form, and the judgement that an object or objects have that property or stand in that relation is said to be an instance of that judgement form. A judgement form is also called a predicate, and the objects constituting an instance are its subjects.

We will use the meta-variable \(P \) to stand for an unspecified judgement form, and the meta-variables \(a, b, \) and \(c \) to stand for unspecified objects. We write \(a P \) for the judgement asserting that \(P \) holds of \(a \). When it is not important to stress the subject of the judgement, we write \(J \) to stand for
an unspecified judgement. For particular judgement forms, we freely use prefix, infix, or mixfix notation, as illustrated by the above examples, in order to enhance readability.

We are being intentionally vague about the universe of objects that may be involved in an inductive definition. The rough-and-ready rule is that any sort of finite construction of objects from other objects is permissible. In particular, we shall make frequent use of the construction of composite objects of the form \(o(a_1, \ldots, a_n) \), where \(a_1, \ldots, a_n \) are objects and \(o \) is an \(n \)-argument operator. This construction includes a special case the formation of \(n \)-tuples, \((a_1, \ldots, a_n)\), in which the tupling operator is left implicit. (In Chapters 8 and 6 we will formalize these and richer forms of objects, called abstract syntax trees.)

1.2 Inference Rules

An *inductive definition* of a judgement form consists of a collection of *rules* of the form

\[
\begin{array}{c}
J_1 \ldots J_k \\
\hline
J
\end{array}
\]

(1.1)

in which \(J \) and \(J_1, \ldots, J_k \) are all judgements of the form being defined. The judgements above the horizontal line are called the *premises* of the rule, and the judgement below the line is called its *conclusion*. If a rule has no premises (that is, when \(k \) is zero), the rule is called an *axiom*; otherwise it is called a *proper rule*.

An inference rule may be read as stating that the premises are *sufficient* for the conclusion: to show \(J \), it is enough to show \(J_1, \ldots, J_k \). When \(k \) is zero, a rule states that its conclusion holds unconditionally. Bear in mind that there may be, in general, many rules with the same conclusion, each specifying sufficient conditions for the conclusion. Consequently, if the conclusion of a rule holds, then it is not necessary that the premises hold, for it might have been derived by another rule.

For example, the following rules constitute an inductive definition of the judgement \(a \text{ nat} \):

\[
\begin{array}{c}
\text{zero nat} \\
\hline
a \text{ nat}
\end{array}
\]

(1.2a)

\[
\begin{array}{c}
\text{succ(a) nat} \\
\hline
a \text{ nat}
\end{array}
\]

(1.2b)

These rules specify that \(a \text{ nat} \) holds whenever either \(a \) is zero, or \(a \) is \(\text{succ(b)} \) where \(b \text{ nat} \). Taking these rules to be exhaustive, it follows that \(a \text{ nat} \) iff \(a \) is a natural number written in unary.
Similarly, the following rules constitute an inductive definition of the judgement a tree:

\[
\begin{align*}
\text{empty tree} & \quad \text{(1.3a)} \\
\begin{array}{c}
a_1 \text{ tree} \\

\end{array} \quad \begin{array}{c}
a_2 \text{ tree} \\

\end{array} & \quad \text{node}(a_1; a_2) \text{ tree} \quad \text{(1.3b)}
\end{align*}
\]

These rules specify that a tree holds if either a is empty, or a is $\text{node}(a_1; a_2)$, where a_1 tree and a_2 tree. Taking these to be exhaustive, these rules state that a is a binary tree, which is to say it is either empty, or a node consisting of two children, each of which is also a binary tree.

The judgement $a = b$ nat defining equality of a nat and b nat is inductively defined by the following rules:

\[
\begin{align*}
\text{zero} = \text{zero nat} & \quad \text{(1.4a)} \\
\begin{array}{c}
a = b \text{ nat} \\

\end{array} & \quad \text{succ}(a) = \text{succ}(b) \text{ nat} \quad \text{(1.4b)}
\end{align*}
\]

In each of the preceding examples we have made use of a notational convention for specifying an infinite family of rules by a finite number of patterns, or rule schemes. For example, Rule (1.2b) is a rule scheme that determines one rule, called an instance of the rule scheme, for each choice of object a in the rule. We will rely on context to determine whether a rule is stated for a specific object, a, or is instead intended as a rule scheme specifying a rule for each choice of objects in the rule. (In Chapter 3 we will remove this ambiguity by introducing parameterization of rules by objects.)

A collection of rules is considered to define the strongest judgement that is closed under, or respects, those rules. To be closed under the rules simply means that the rules are sufficient to show the validity of a judgement: J holds if there is a way to obtain it using the given rules. To be the strongest judgement closed under the rules means that the rules are also necessary: J holds only if there is a way to obtain it by applying the rules. The sufficiency of the rules means that we may show that J holds by deriving it by composing rules. Their necessity means that we may reason about it using rule induction.

1.3 Derivations

To show that an inductively defined judgement holds, it is enough to exhibit a derivation of it. A derivation of a judgement is a composition of rules, starting with axioms and ending with that judgement. It may be thought...
of as a tree in which each node is a rule whose children are derivations of its premises. We sometimes say that a derivation of \(J \) is evidence for the validity of an inductively defined judgement \(J \).

We usually depict derivations as trees with the conclusion at the bottom, and with the children of a node corresponding to a rule appearing above it as evidence for the premises of that rule. Thus, if

\[
\frac{I_1 \ldots I_k}{J}
\]

is an inference rule and \(\nabla_1, \ldots, \nabla_k \) are derivations of its premises, then

\[
\frac{\nabla_1 \ldots \nabla_k}{J}
\]

is a derivation of its conclusion. In particular, if \(k = 0 \), then the node has no children.

For example, this is a derivation of \(\text{succ(succ(succ(zero)))} \) nat:

\[
\frac{\text{zero} \text{ nat}}{\text{succ(zero)} \text{ nat}} \frac{\text{succ(succ(zero))} \text{ nat}}{\text{succ(succ(succ(zero)))} \text{ nat}}.
\]

Similarly, here is a derivation of \(\text{node(node(empty; empty); empty)} \) tree:

\[
\frac{\text{empty tree} \quad \text{empty tree}}{\text{node(empty; empty)} \text{ tree} \quad \text{empty tree}} \frac{\text{node(node(empty; empty); empty)} \text{ tree}}{\text{node(node(node(empty; empty); empty); empty) tree}}.
\]

To show that an inductively defined judgement is derivable we need only find a derivation for it. There are two main methods for finding derivations, called forward chaining, or bottom-up construction, and backward chaining, or top-down construction. Forward chaining starts with the axioms and works forward towards the desired conclusion, whereas backward chaining starts with the desired conclusion and works backwards towards the axioms.

More precisely, forward chaining search maintains a set of derivable judgements, and continually extends this set by adding to it the conclusion of any rule all of whose premises are in that set. Initially, the set is empty; the process terminates when the desired judgement occurs in the set. Assuming that all rules are considered at every stage, forward chaining will
eventually find a derivation of any derivable judgement, but it is impos-
sible (in general) to decide algorithmically when to stop extending the set
and conclude that the desired judgement is not derivable. We may go on
and on adding more judgements to the derivable set without ever achiev-
ing the intended goal. It is a matter of understanding the global properties
of the rules to determine that a given judgement is not derivable.

Forward chaining is undirected in the sense that it does not take ac-
count of the end goal when deciding how to proceed at each step. In
contrast, backward chaining is goal-directed. Backward chaining search
maintains a queue of current goals, judgements whose derivations are to
be sought. Initially, this set consists solely of the judgement we wish to de-
rive. At each stage, we remove a judgement from the queue, and consider
all rules whose conclusion is that judgement. For each such rule, we add
the premises of that rule to the back of the queue, and continue. If there is
more than one such rule, this process must be repeated, with the same start-
ing queue, for each candidate rule. The process terminates whenever the
queue is empty, all goals having been achieved; any pending consideration
of candidate rules along the way may be discarded. As with forward chain-
ing, backward chaining will eventually find a derivation of any derivable
judgement, but there is, in general, no algorithmic method for determining
in general whether the current goal is derivable. If it is not, we may futilely
add more and more judgements to the goal set, never reaching a point at
which all goals have been satisfied.

1.4 Rule Induction

Since an inductively defined judgement holds only if there is some deriv-
ation of it, we may prove properties of such judgements by rule induction,
or induction on derivations. The principle of rule induction states that to
show that a property \mathcal{P} holds of a judgement J whenever J is derivable, it
is enough to show that \mathcal{P} is closed under, or respects, the rules defining J.
Writing $\mathcal{P}(J)$ to mean that \mathcal{P} holds of J, we say that \mathcal{P} respects the rule

$$
\begin{array}{c}
J_1, \ldots, J_k \\
\hline
J
\end{array}
$$

if $\mathcal{P}(J)$ holds whenever $\mathcal{P}(J_1), \ldots, \mathcal{P}(J_k)$. The assumptions $\mathcal{P}(J_1), \ldots, \mathcal{P}(J_k)$
are the inductive hypotheses, and $\mathcal{P}(J)$ is the inductive conclusion, correspond-
ing to that rule.
The principle of rule induction is simply the expression of the definition of an inductively defined judgement form as the strongest judgement form closed under the rules comprising the definition. This means that the judgement form is both (a) closed under those rules, and (b) sufficient for any other property also closed under those rules. The former property means that a derivation is evidence for the validity of a judgement; the latter means that we may reason about an inductively defined judgement form by rule induction.

If $P(J)$ is closed under a set of rules defining a judgement form, then so is the conjunction of P with the judgement itself. This means that when showing P to be closed under a rule, we may inductively assume not only that $P(J_i)$ holds for each of the premises J_i, but also that J_i itself holds as well. We shall generally take advantage of this without explicit mentioning that we are doing so.

When specialized to Rules (1.2), the principle of rule induction states that to show $P(a \text{ nat})$ whenever $a \text{ nat}$, it is enough to show:

1. $P(\text{zero nat}).$
2. $P(\text{succ}(a) \text{ nat})$, assuming $P(a \text{ nat}).$

This is just the familiar principle of mathematical induction arising as a special case of rule induction.

Similarly, rule induction for Rules (1.3) states that to show $P(a \text{ tree})$ whenever $a \text{ tree}$, it is enough to show

1. $P(\text{empty tree}).$
2. $P(\text{node}(a_1;a_2) \text{ tree})$, assuming $P(a_1 \text{ tree})$ and $P(a_2 \text{ tree}).$

This is called the principle of tree induction, and is once again an instance of rule induction.

As a simple example of a proof by rule induction, let us prove that natural number equality as defined by Rules (1.4) is reflexive:

Lemma 1.1. If $a \text{ nat}$, then $a = a \text{ nat}.$

Proof. By rule induction on Rules (1.2):

Rule (1.2a) Applying Rule (1.4a) we obtain $\text{zero} = \text{zero nat}.$

Rule (1.2b) Assume that $a = a \text{ nat}.$ It follows that $\text{succ}(a) = \text{succ}(a) \text{ nat}$ by an application of Rule (1.4b).
1.4 Rule Induction

As another example of the use of rule induction, we may show that the predecessor of a natural number is also a natural number. While this may seem self-evident, the point of the example is to show how to derive this from first principles.

Lemma 1.2. If $\text{succ}(a) \text{ nat}$, then $a \text{ nat}$.

Proof. It is instructive to re-state the lemma in a form more suitable for inductive proof: if $b \text{ nat}$ and b is $\text{succ}(a)$ for some a, then $a \text{ nat}$. We proceed by rule induction on Rules (1.2).

Rule (1.2a) Vacuously true, since zero is not of the form $\text{succ}(-)$.

Rule (1.2b) We have that b is $\text{succ}(b')$, and we may assume both that the lemma holds for b' and that $b' \text{ nat}$. The result follows directly, since if $\text{succ}(b') = \text{succ}(a)$ for some a, then a is b'.

Similarly, let us show that the successor operation is injective.

Lemma 1.3. If $\text{succ}(a_1) = \text{succ}(a_2) \text{ nat}$, then $a_1 = a_2 \text{ nat}$.

Proof. It is instructive to re-state the lemma in a form more directly amenable to proof by rule induction. We are to show that if $b_1 = b_2 \text{ nat}$ then if b_1 is $\text{succ}(a_1)$ and b_2 is $\text{succ}(a_2)$, then $a_1 = a_2 \text{ nat}$. We proceed by rule induction on Rules (1.4):

Rule (1.4a) Vacuously true, since zero is not of the form $\text{succ}(-)$.

Rule (1.4b) Assuming the result for $b_1 = b_2 \text{ nat}$, and hence that the premise $b_1 = b_2 \text{ nat}$ holds as well, we are to show that if $\text{succ}(b_1)$ is $\text{succ}(a_1)$ and $\text{succ}(b_2)$ is $\text{succ}(a_2)$, then $a_1 = a_2 \text{ nat}$. Under these assumptions we have b_1 is a_1 and b_2 is a_2, and so $a_1 = a_2 \text{ nat}$ is just the premise of the rule. (We make no use of the inductive hypothesis to complete this step of the proof.)

Both proofs rely on some natural assumptions about the universe of objects; see Section 1.8 on page 13 for further discussion.

1.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top of another. In an iterated inductive definition the premises of a rule

\[
\frac{I_1 \cdots I_k}{J}
\]

may be instances of either a previously defined judgement form, or the judgement form being defined. For example, the following rules, define the judgement \(a \text{ list} \) stating that \(a \) is a list of natural numbers.

\[
\begin{align*}
\text{nil list} & \quad \text{(1.8a)} \\
\text{a nat} \quad \text{b list} & \quad \text{cons}(a;b) \text{ list} \quad \text{(1.8b)}
\end{align*}
\]

The first premise of Rule (1.8b) is an instance of the judgement form \(a \text{ nat} \), which was defined previously, whereas the premise \(\text{b list} \) is an instance of the judgement form being defined by these rules.

Frequently two or more judgements are defined at once by a simultaneous inductive definition. A simultaneous inductive definition consists of a set of rules for deriving instances of several different judgement forms, any of which may appear as the premise of any rule. Since the rules defining each judgement form may involve any of the others, none of the judgement forms may be taken to be defined prior to the others. Instead one must understand that all of the judgement forms are being defined at once by the entire collection of rules. The judgement forms defined by these rules are, as before, the strongest judgement forms that are closed under the rules. Therefore the principle of proof by rule induction continues to apply, albeit in a form that allows us to prove a property of each of the defined judgement forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive definition of the judgements \(a \text{ even} \), stating that \(a \) is an even natural number, and \(a \text{ odd} \), stating that \(a \) is an odd natural number:

\[
\begin{align*}
\text{zero even} & \quad \text{(1.9a)} \\
\text{a odd} \quad \text{succ}(a) \text{ even} & \quad \text{(1.9b)} \\
\text{a even} \quad \text{succ}(a) \text{ odd} & \quad \text{(1.9c)}
\end{align*}
\]
The principle of rule induction for these rules states that to show simultaneously that $P(a \text{ even})$ whenever $a \text{ even}$ and $P(a \text{ odd})$ whenever $a \text{ odd}$, it is enough to show the following:

1. $P(\text{zero even})$;
2. if $P(a \text{ odd})$, then $P(\text{succ}(a) \text{ even})$;
3. if $P(a \text{ even})$, then $P(\text{succ}(a) \text{ odd})$.

As a simple example, we may use simultaneous rule induction to prove that (1) if $a \text{ even}$, then $a \text{ nat}$, and (2) if $a \text{ odd}$, then $a \text{ nat}$. That is, we define the property P by (1) $P(a \text{ even})$ iff $a \text{ nat}$, and (2) $P(a \text{ odd})$ iff $a \text{ nat}$. The principle of rule induction for Rules (1.9) states that it is sufficient to show the following facts:

1. zero nat, which is derivable by Rule (1.2a).
2. If $a \text{ nat}$, then $\text{succ}(a) \text{ nat}$, which is derivable by Rule (1.2b).
3. If $a \text{ nat}$, then $\text{succ}(a) \text{ nat}$, which is also derivable by Rule (1.2b).

1.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an inductive definition of its graph relating inputs to outputs, and then showing that the relation uniquely determines the outputs for given inputs. For example, we may define the addition function on natural numbers as the relation $\text{sum}(a; b; c)$, with the intended meaning that c is the sum of a and b, as follows:

$$
\frac{b \text{ nat}}{\text{sum(\text{zero}; b; b)}} \quad (1.10a)
$$

$$
\frac{\text{sum}(a; b; c)}{\text{sum(\text{succ}(a); b; \text{succ}(c))}} \quad (1.10b)
$$

The rules define a ternary (three-place) relation, $\text{sum}(a; b; c)$, among natural numbers a, b, and c. We may show that c is determined by a and b in this relation.

Theorem 1.4. For every $a \text{ nat}$ and $b \text{ nat}$, there exists a unique $c \text{ nat}$ such that $\text{sum}(a; b; c)$.

Proof. The proof decomposes into two parts:
1. (Existence) If \(a \) nat and \(b \) nat, then there exists \(c \) nat such that \(\text{sum}(a; b; c) \).

2. (Uniqueness) If \(a \) nat, \(b \) nat, \(c \) nat, \(c' \) nat, \(\text{sum}(a; b; c) \), and \(\text{sum}(a; b; c') \), then \(c = c' \) nat.

For existence, let \(\mathcal{P}(a \text{ nat}) \) be the proposition \(\text{if } b \text{ nat then there exists } c \text{ nat such that } \text{sum}(a; b; c) \). We prove that if \(a \) nat then \(\mathcal{P}(a \text{ nat}) \) by rule induction on Rules (1.2). We have two cases to consider:

Rule (1.2a) We are to show \(\mathcal{P}(\text{zero nat}) \). Assuming \(b \) nat and taking \(c \) to be \(b \), we obtain \(\text{sum}(\text{zero}; b; c) \) by Rule (1.10a).

Rule (1.2b) Assuming \(\mathcal{P}(a \text{ nat}) \), we are to show \(\mathcal{P}(\text{succ}(a) \text{ nat}) \). That is, we assume that if \(b \) nat then there exists \(c \) such that \(\text{sum}(a; b; c) \), and are to show that if \(b' \) nat, then there exists \(c' \) such that \(\text{sum}(\text{succ}(a); b'; c') \).

To this end, suppose that \(b' \) nat. Then by induction there exists \(c \) such that \(\text{sum}(a; b'; c) \). Taking \(c' = \text{succ}(c) \), and applying Rule (1.10b), we obtain \(\text{sum}(\text{succ}(a); b'; c') \), as required.

For uniqueness, we prove that if \(\text{sum}(a; b; c_1) \), then if \(\text{sum}(a; b; c_2) \), then \(c_1 = c_2 \) nat by rule induction based on Rules (1.10).

Rule (1.10a) We have \(a = \text{zero} \) and \(c_1 = b \). By an inner induction on the same rules, we may show that if \(\text{sum}(\text{zero}; b; c_2) \), then \(c_2 \) is \(b \). By Lemma 1.1 on page 8 we obtain \(b = b \) nat.

Rule (1.10b) We have that \(a = \text{succ}(a') \) and \(c_1 = \text{succ}(c_1') \), where \(\text{sum}(a'; b; c_1') \). By an inner induction on the same rules, we may show that if \(\text{sum}(a; b; c_2) \), then \(c_2 = \text{succ}(c_2') \) nat where \(\text{sum}(a'; b; c_2') \). By the outer inductive hypothesis \(c_1' = c_2' \) nat and so \(c_1 = c_2 \) nat.

\[\square \]

1.7 Modes

The statement that one or more arguments of a judgement is (perhaps uniquely) determined by its other arguments is called a *mode specification* for that judgement. For example, we have shown that every two natural numbers have a sum according to Rules (1.10). This fact may be restated as a mode specification by saying that the judgement \(\text{sum}(a; b; c) \) has mode \((\forall, \forall, \exists) \).

The notation arises from the form of the proposition it expresses: *for all* \(a \) nat *and for all* \(b \) nat, *there exists* \(c \) nat *such that* \(\text{sum}(a; b; c) \). If we wish
to further specify that \(c \) is uniquely determined by \(a \) and \(b \), we would say that the judgement \(\text{sum}(a; b; c) \) has mode \((\forall, \forall, \exists!) \), corresponding to the proposition \(\text{for all } a \text{ nat and for all } b \text{ nat, there exists a unique } c \text{ nat such that } \text{sum}(a; b; c) \). If we wish only to specify that the sum is unique, if it exists, then we would say that the addition judgement has mode \((\forall, \forall, \exists^{\leq 1}) \), corresponding to the proposition \(\text{for all } a \text{ nat and for all } b \text{ nat there exists at most one } c \text{ nat such that } \text{sum}(a; b; c) \).

As these examples illustrate, a given judgement may satisfy several different mode specifications. In general the universally quantified arguments are to be thought of as the inputs of the judgement, and the existentially quantified arguments are to be thought of as its outputs. We usually try to arrange things so that the outputs come after the inputs, but it is not essential that we do so. For example, addition also has the mode \((\forall, \exists^{\leq 1}, \forall) \), stating that the sum and the first addend uniquely determine the second addend, if there is any such addend at all. Put in other terms, addition of natural numbers has a (partial) inverse, namely subtraction! We could equally well show that addition has mode \((\exists^{\leq 1}, \forall, \forall) \), which is just another way of stating that addition has a partial inverse over the natural numbers.

Often there is an intended, or principal, mode of a given judgement, which we often foreshadow by our choice of notation. For example, when giving an inductive definition of a function, we often use equations to indicate the intended input and output relationships. For example, we may re-state the inductive definition of addition (given by Rules (1.10)) using equations:

\[
\begin{align*}
\frac{a \text{ nat}}{a + \text{zero} = a \text{ nat}} & \quad (1.11a) \\
\frac{a + b = c \text{ nat}}{a + \text{succ}(b) = \text{succ}(c) \text{ nat}} & \quad (1.11b)
\end{align*}
\]

When using this notation we tacitly incur the obligation to prove that the mode of the judgement is such that the object on the right-hand side of the equations is determined as a function of those on the left. Having done so, we abuse notation, writing \(a + b \) for the unique \(c \) such that \(a + b = c \text{ nat} \).

1.8 Foundations

An inductively defined judgement form, such as \(a \text{ nat} \), may be seen as “carving out” a particular class of objects from an (as yet unspecified) universe of discourse that is rich enough to include the objects in question. That is, among the objects in the universe, the judgement \(a \text{ nat} \) isolates those
objects of the form \(\text{succ}(\ldots \text{succ}(\text{zero}) \ldots) \). But what, precisely, are these objects? And what sorts of objects are permissible in an inductive definition?

One answer to these questions is to fix in advance a particular set to serve as the universe over which all inductive definitions are to take place. This set must be proved to exist on the basis of the standard axioms of set theory, and the objects that we wish to use in our inductive definitions must be encoded as elements of this set. But what set shall we choose as our universe? And how are the various objects of interest encoded within it?

At the least we wish to include all possible finite trees whose nodes are labelled by an element of an infinite set of operators. For example, the object \(\text{succ}(\text{succ}(\text{zero})) \) may be considered to be a tree of height two whose root is labelled with the operator \(\text{succ} \) and whose sole child is also so labelled and has a child labelled \(\text{zero} \). Judgements with multiple arguments, such as \(a + b = c \) \(\text{nat} \), may be handled by demanding that the universe also be closed under formation of finite tuples \((a_1, \ldots, a_n) \) of objects. It is also possible to consider other forms of objects, such as infinitary trees, whose nodes may have infinitely many children, or regular trees, whose nodes may have ancestors as children, but we shall not have need of these in our work.

To construct a set of finitary objects requires that we fix a representation of trees and tuples as certain sets. This can be done, but the results are notoriously unenlightening. Instead we shall simply assert that such a set exists (that is, can be constructed from the standard axioms of set theory). The construction should ensure that we can construct any finitary tree, and, given any finitary tree, determine the operator at its root and the set of trees that are its children.

While many will feel more secure by working within set theory, it is important to keep in mind that accepting the axioms of set theory is far more dubious, foundationally speaking, than just accepting the existence of finitary trees without recourse to encoding them as sets. Moreover, there is a significant disadvantage to working with sets. If we use abstract sets to model computational phenomena, we incur the additional burden of showing that these set-theoretic constructions can all be implemented on a computer. In contrast, it is intuitively clear how to represent finitary trees on a computer, and how to compute with them by recursion, so no further

1 Perhaps you have seen the definition of the natural number 0 as the empty set, \(\emptyset \), and the number \(n + 1 \) as the set \(n \cup \{ n \} \), or the definition of the ordered pair \(\langle a, b \rangle = \{ a, \{ a, b \} \} \). Similar coding tricks can be used to represent any finitary tree.
1.9 Exercises

1. Give an inductive definition of the judgement $\max(a; b; c)$, where $a \nat$, $b \nat$, and $c \nat$, with the meaning that c is the larger of a and b. Prove that this judgement has the mode $(\forall, \forall, \exists!)$.

2. Consider the following rules, which define the height of a binary tree as the judgement $\text{hgt}(a; b)$.

$$\text{hgt}(\text{empty}; \text{zero})$$ (1.12a)

$$\frac{\text{hgt}(a_1; b_1) \quad \text{hgt}(a_2; b_2) \quad \max(b_1; b_2; b)}{\text{hgt}(\text{node}(a_1; a_2); \text{succ}(b))}$$ (1.12b)

Prove by tree induction that the judgement hgt has the mode $(\forall, \exists!)$, with inputs being binary trees and outputs being natural numbers.

3. Give an inductive definition of the judgement $\:\nabla \text{ is a derivation of } J$ for an inductively defined judgement J of your choice.

4. Give an inductive definition of the forward-chaining and backward-chaining search strategies.
Chapter 2

Hypothetical Judgements

A *categorical* judgement is an unconditional assertion about some object of the universe. The inductively defined judgements given in Chapter 1 are all categorical. A *hypothetical judgement* expresses an *entailment* between one or more *hypotheses* and a *conclusion*. We will consider two notions of entailment, called *derivability* and *admissibility*. Derivability expresses the stronger of the two forms of entailment, namely that the conclusion may be deduced directly from the hypotheses by composing rules. Admissibility expresses the weaker form, that the conclusion is derivable from the rules whenever the hypotheses are also derivable. Both forms of entailment share a common set of *structural* properties that characterize conditional reasoning. One consequence of these properties is that derivability is stronger than admissibility (but the converse fails, in general). We then generalize the concept of an inductive definition to admit rules that have not only categorical, but also hypothetical, judgements as premises. Using these we may enrich the rule set with new axioms that are available for use within a specified premise of a rule.

2.1 Derivability

For a given set, \mathcal{R}, of rules, we define the *derivability* judgement, written $J_1, \ldots, J_k \vdash_{\mathcal{R}} K$, where each J_i and K are categorical, to mean that we may derive K using rules $\mathcal{R} \cup \{J_1, \ldots, J_k\}$.\(^1\) That is, we treat the *hypotheses*, or *antecedents*, of the judgement, J_1, \ldots, J_n as *temporary axioms*, and derive the *conclusion*, or *consequent*, by composing rules in \mathcal{R}. That is, evidence for a

\(^1\)Here we are treating the judgements J_i as axioms, or rules with no premises.
hypothesised judgement consists of a derivation of the conclusion from the hypotheses using the rules in \mathcal{R}.

We often use capital Greek letters, frequently Γ or Δ, to stand for a finite set of categorical judgements, writing $\Gamma \vdash_{\mathcal{R}} K$ to mean that K is derivable from rules $\mathcal{R} \cup \Gamma$ (that is, regarding the hypotheses as axioms). We sometimes write $\vdash_{\mathcal{R}} \Gamma$, where Γ is the finite set $\{J_1, \ldots, J_k\}$, to mean that $\vdash_{\mathcal{R}} J_i$ for each $1 \leq i \leq k$. The derivability judgement $\vdash_{\mathcal{R}} J_1, \ldots, J_n \vdash_{\mathcal{R}} J$ is sometimes expressed by saying that the rule

$$\begin{array}{c}
J_1 \ldots J_n \\
\hline
J
\end{array}$$

(2.1)

is derivable according to the rules \mathcal{R}.

For example, the derivability judgement

$$a \text{ nat} \vdash \text{succ(succ(a)) nat}$$

(2.2)

is valid relative to Rules (1.2) for any choice of object a. Evidence for this is provided by the derivation

$$\begin{array}{c}
a \text{ nat} \\
\hline
\text{succ(a) nat} \\
\hline
\text{succ(succ(a)) nat}
\end{array}$$

(2.3)

which composes Rules (1.2), starting with $a \text{ nat}$ as an axiom, and ending with succ(succ(a)) nat. This may be equivalently expressed by stating that the rule

$$\begin{array}{c}
a \text{ nat} \\
\hline
\text{succ(succ(a)) nat}
\end{array}$$

(2.4)

is derivable relative to Rules (1.2).

It follows directly from the definition of derivability that it is stable under extension with new rules.

Theorem 2.1 (Uniformity). If $\Gamma \vdash_{\mathcal{R}} J$, then $\Gamma \vdash_{\mathcal{R} \cup \mathcal{R}'} J$.

Proof. Any derivation of J from $\mathcal{R} \cup \Gamma$ is also a derivation from $\mathcal{R} \cup \mathcal{R}' \cup \Gamma$, since the presence of additional rules does not influence the validity of the derivation. \hfill \qed

Derivability enjoys a number of structural properties that follow from its definition, independently of the rule set, \mathcal{R}, in question.

Reflexivity Every judgement is a consequence of itself: $\Gamma, J \vdash J$. Each hypothesis justifies itself as conclusion.
2.2 Admissibility

Weakening If $\Gamma \vdash J$, then $\Gamma, K \vdash J$. Entailment is not influenced by unexercised options.

Exchange If $\Gamma_1, J_1, J_2, \Gamma_2 \vdash J$, then $\Gamma_1, J_2, J_1, \Gamma_2 \vdash J$. The relative ordering of the axioms is immaterial.

Contraction If $\Gamma, J, J \vdash K$, then $\Gamma, J \vdash K$. We may use a hypothesis as many times as we like in a derivation.

Transitivity If $\Gamma, K \vdash J$ and $\Gamma \vdash K$, then $\Gamma \vdash J$. If we replace an axiom by a derivation of it, the result is a derivation of its consequent without that hypothesis.

These properties may be summarized by saying that derivability is structural.

Theorem 2.2. For any rule set \mathcal{R}, the derivability judgement $\Gamma \vdash_{\mathcal{R}} J$ is structural.

Proof. Reflexivity follows directly from the meaning of derivability. Weakening follows directly from uniformity. Exchange and contraction are inherent in treating rules as sets. Transitivity is proved by rule induction on the first premise. \qed

2.2 Admissibility

Admissibility, written $\Gamma \vdash_{\mathcal{R}} J$, is a weaker form of hypothetical judgement stating that $\vdash_{\mathcal{R}} \Gamma$ implies $\vdash_{\mathcal{R}} J$. That is, the conclusion J is derivable from rules \mathcal{R} whenever the assumptions Γ are all derivable from rules \mathcal{R}. In particular if any of the hypotheses are not derivable relative to \mathcal{R}, then the judgement is vacuously true. The admissibility judgement $J_1, \ldots, J_n \vdash_{\mathcal{R}} J$ is sometimes expressed by stating that the rule,

$$
\frac{J_1 \quad \ldots \quad J_n}{J},
$$

is admissible relative to the rules in \mathcal{R}.

For example, the admissibility judgement

$$\text{succ}(a) \text{ nat} \vdash a \text{ nat}$$

is expressed as:

$$\text{succ}(a) \text{ nat} \vdash_{\mathcal{R}} a \text{ nat}$$

January 21, 2009 Draft 12:59 PM
is valid, because any derivation of \(\text{succ}(a) \) nat from Rules (1.2) must contain a sub-derivation of \(a \) nat from the same rules, which justifies the conclusion. This may equivalently be expressed by saying that the rule

\[
\begin{align*}
\text{succ}(a) \quad &\text{nat} \\
\hline
a \quad &\text{nat}
\end{align*}
\]

(2.7)

is admissible relative to Rules (1.2).

In contrast to derivability the admissibility judgement is not stable under extension to the rules. For example, if we enrich Rules (1.2) with the axiom

\[
\text{succ}(\text{junk}) \quad \text{nat}
\]

(2.8)

(where junk is some object for which junk nat is not derivable), then the admissibility (2.6) is invalid. This is because Rule (2.8) has no premises, and there is no composition of rules deriving junk nat.

This example shows that admissibility is sensitive to which rules are absent from, as well as to which rules are present in, an inductive definition.

The structural properties of derivability given by Theorem 2.2 on the preceding page ensure that derivability is stronger than admissibility.

Theorem 2.3. If \(\Gamma \vdash R J \), then \(\Gamma \models_R J \).

Proof. Repeated application of the transitivity of derivability shows that if \(\Gamma \vdash_R J \) and \(\vdash_R \Gamma \), then \(\vdash_R J \).

To see that the converse fails, observe that there is no composition of rules such that

\[
\text{succ}(\text{junk}) \quad \text{nat} \vdash_{(1,2)} \text{junk nat},
\]

yet the admissibility judgement

\[
\text{succ}(\text{junk}) \quad \text{nat} \models_{(1,2)} \text{junk nat}
\]

holds vacuously.

Evidence for admissibility may be thought of as a mathematical function transforming derivations \(\nabla_1, \ldots, \nabla_n \) of the hypotheses into a derivation \(\nabla \) of the consequent. Therefore, the admissibility judgement enjoys the same structural properties as derivability, and hence is a form of hypothetical judgement:

Reflexivity If \(J \) is derivable from the original rules, then \(J \) is derivable from the original rules: \(J \models J \).
2.3 Hypothetical Inductive Definitions

Weakening If \(J \) is derivable from the original rules assuming that each of the judgements in \(\Gamma \) are derivable from these rules, then \(J \) must also be derivable assuming that \(\Gamma \) and also \(K \) are derivable from the original rules: if \(\Gamma \models J \), then \(\Gamma, K \models J \).

Exchange The order of assumptions in an iterated implication does not matter.

Contraction Assuming the same thing twice is the same as assuming it once.

Transitivity If \(\Gamma, K \models J \) and \(\Gamma \models K \), then \(\Gamma \models J \). If the assumption \(K \) is used, then we may instead appeal to the assumed derivability of \(K \).

Theorem 2.4. The admissibility judgement \(\Gamma \models_R J \) is structural.

Proof. Follows immediately from the definition of admissibility as stating that if the hypotheses are derivable relative to \(R \), then so is the conclusion. \(\square\)

2.3 Hypothetical Inductive Definitions

It is useful to enrich the concept of an inductive definition to permit rules with derivability judgements as premises and conclusions. Doing so permits us to introduce *local hypotheses* that apply only in the derivation of a particular premise, and also allows us to constrain inferences based on the *global hypotheses* in effect at the point where the rule is applied.

A hypothetical inductive definition consists of a collection of hypothetical rules of the form

\[
\frac{\Gamma_1 \models J_1 \quad \ldots \quad \Gamma_n \models J_n}{\Gamma \models J}.
\]

(2.9)

The hypotheses \(\Gamma \) are the *global hypotheses* of the rule, and the hypotheses \(\Gamma_i \) are the *local hypotheses* of the \(i \)th premise of the rule. Informally, this rule states that \(J \) is a derivable consequence of \(\Gamma \) whenever each \(J_i \) is a derivable consequence of \(\Gamma \), augmented with the additional hypotheses \(\Gamma_i \). Thus, one way to show that \(J \) is derivable from \(\Gamma \) is to show, in turn, that each \(J_i \) is derivable from \(\Gamma \Gamma_i \). The derivation of each premise involves a “context switch” in which we extend the global hypotheses with the local hypotheses of that premise, establishing a new global hypothesis set for use within that derivation.
Often a hypothetical rule is given for each choice of global context, without restriction. In that case the rule is said to be pure, because it applies irrespective of the context in which it is used. A pure rule, being stated uniformly for all global contexts, may be given in implicit form, as follows:

\[
\frac{\Gamma_1 \vdash J_1 \ldots \Gamma_n \vdash J_n}{\Gamma \vdash J}. \tag{2.10}
\]

This formulation omits explicit mention of the global context in order to focus attention on the local aspects of the inference.

Sometimes it is necessary to restrict the global context of an inference, so that it applies only a specified side condition is satisfied. Such rules are said to be impure. Impure rules generally have the form

\[
\frac{\Gamma \Gamma_1 \vdash J_1 \ldots \Gamma \Gamma_n \vdash J_n \quad \Psi}{\Gamma \vdash J}, \tag{2.11}
\]

where the condition, \(\Psi \), limits the applicability of this rule to situations in which it is true. For example, \(\Psi \) may restrict the global context of the inference to be empty, so that no instances involving global hypotheses are permissible.

What does it mean to use the derivability consequence relation for a set of rules in one of the rules of that very set? One way to justify this is to consider a hypothetical inductive definition to be an ordinary inductive definition of a formal derivability judgement, \(\Gamma \vdash J \), for which the following structural rules must be admissible:

\[
\frac{\Gamma, J \vdash J}{\Gamma \vdash J} \tag{2.12a}
\]

\[
\frac{\Gamma \vdash J}{\Gamma, K \vdash J} \tag{2.12b}
\]

\[
\frac{\Gamma \vdash K \quad \Gamma, K \vdash J}{\Gamma \vdash J} \tag{2.12c}
\]

In the common case that all rules in a definition are pure, the structural rules (2.12b) and (2.12c) are easily seen to be admissible by rule induction. It is necessary to include Rule (2.12a) explicitly to ensure that the formal derivability enjoys the expected structural properties.

Just as with an ordinary inductive definition, we say that a property, \(\mathcal{P} \), of judgements \(\Gamma \vdash J \) is closed under a hypothetical rule

\[
\frac{\Gamma \Gamma_1 \vdash J_1 \ldots \Gamma \Gamma_n \vdash J_n}{\Gamma \vdash J} \tag{2.13}
\]
2.4 Exercises

if, and only if,

\[\mathcal{P}(\Gamma \Gamma_1 \vdash J_1), \ldots, \mathcal{P}(\Gamma \Gamma_n \vdash J_n) \text{ imply } \mathcal{P}(\Gamma \vdash J). \]

For example, \(\mathcal{P} \) is closed under reflexivity iff \(\mathcal{P}(\Gamma, J \vdash J) \).

For a given set of hypothetical rules, \(\mathcal{R} \), the judgement \(\Gamma \vdash_R J \) is defined to be the strongest formal entailment closed under \(\mathcal{R} \). It follows that this judgement is closed under the rules \(\mathcal{R} \) in that if \(\Gamma \Gamma_1 \vdash_R J_1 \), and \(\ldots \) and \(\Gamma \Gamma_n \vdash_R J_n \), then \(\Gamma \vdash_R J \). The principle of hypothetical rule induction is valid: to show that \(\mathcal{P}(\Gamma \vdash J) \) whenever \(\Gamma \vdash_R J \), it is enough to show, for each rule of the form (2.9), if \(\mathcal{P}(\Gamma, \Gamma_1 \vdash J_1) \), and \(\ldots \) and \(\mathcal{P}(\Gamma, \Gamma_n \vdash J_n) \), then \(\mathcal{P}(\Gamma \vdash J) \).

We will make frequent use of this induction principle throughout the book.

2.4 Exercises

1. Prove that if all rules in a hypothetical inductive definition are pure, then the structural rules of weakening (Rule (2.12b)) and transitivity (Rule (2.12c)) are admissible.

2. Define \(\Gamma' \vdash \Gamma \) to mean that \(\Gamma' \vdash J \) for each \(J \) in \(\Gamma \). Show that \(\Gamma \vdash J \) iff whenever \(\Gamma' \vdash \Gamma \), it follows that \(\Gamma' \vdash J \). \textit{Hint}: from left to right, appeal to transitivity of entailment; from right to left, consider the case of \(\Gamma' = \Gamma \).

3. Show that it is dangerous to permit admissibility judgements in the premise of a rule. \textit{Hint}: show that using such rules one may “define” an inconsistent judgement form \(J \) for which we have \(a J \) iff it is not the case that \(a J \).
Chapter 3

Generic Judgements

Just as hypothetical judgements express reasoning under hypotheses, so generic judgements express reasoning generically with respect to unspecified objects. There are two forms of generic judgement, the parametric, or uniform, and the non-parametric, or non-uniform. The parametric form captures reasoning that is completely independent of one or more objects, which are represented by parameters, much as the derivability judgement expresses reasoning with respect to unjustified axioms. The non-parametric form captures reasoning that depends on the specific choice of objects, much as the admissibility judgement expresses reasoning based on the possible forms of derivation of the hypotheses. The concept of a hypothetical inductive definition may be generalized to admit either form of generic judgement as premises, resulting in the concept of a generic inductive definition, which we shall use heavily throughout the book.

3.1 Objects and Parameters

We will enrich the class of objects that we consider to include parameters, or indeterminates, that may be replaced by other objects, themselves perhaps involving parameters, by a process known as substitution, or instantiation. For the purposes of this chapter we need not be specific about the exact nature of objects, parameters, or substitution, but can instead rely only on a specification of a few operations and relations on them.

We assume given an infinite class of objects, called parameters, that are distinct from all other objects (so that we know a parameter when we see one, and cannot confuse parameters with other forms of object). We generally use the variables, x, y, and z to stand for parameters, and we use the
variables \mathcal{X} and \mathcal{Y} to stand for finite sets of parameters. We write \mathcal{X}, x for $\mathcal{X} \cup \{ x \}$, and \mathcal{X}, \mathcal{Y} for $\mathcal{X} \cup \mathcal{Y}$.

We take as given a judgement $\mathcal{X} \vdash a \text{ obj}$ specifying that a is an object all of whose parameters lie within the set \mathcal{X}. Observe that if $\emptyset \vdash a \text{ obj}$ and $x \notin \mathcal{X}$, then the parameter x cannot occur within the object a. If $\emptyset \vdash a \text{ obj}$, then we say that a is a *closed* object; otherwise, a is said to be an *open* object. Observe that the judgement $\mathcal{X} \vdash a \text{ obj}$ is closed under expansion of the set of parameters, and that $\mathcal{X}, x \vdash x \text{ obj}$.

We further assume that parameters may be *renamed* at will, provided that no two parameters are confused in the process. If $\mathcal{X}, x \vdash a \text{ x obj}$ is an object involving parameter x, and $y \notin \mathcal{X}$, then $\mathcal{X}, y \vdash a \text{ y obj}$ as well. We also assume given a function, called *substitution*, or *instantiation*, and written $[a/x]b$, with the property that if $\mathcal{X} \vdash a \text{ obj}$ and $\mathcal{X}, x \vdash b \text{ obj}$, then $\mathcal{X} \vdash [a/x]b \text{ obj}$. More generally, we make use of *simultaneous substitution*, written $[[a_{1}, \ldots, a_{n}/x_{1}, \ldots, x_{n}]a$, with the evident meaning. We assume that substitution is associative in the sense that

$$[a/x][b/y]c = [[a/x]b/y][a/x]c.$$

In practice it is usually necessary to distinguish multiple categories of objects and parameters, and to restrict renaming and substitution to respect the classes of the objects and parameters involved. It is straightforward to generalize the material in this chapter to account for multiple categories of objects and parameters.

3.2 Rule Schemes

We begin by making precise the informal concepts of rules and rule schemes discussed in Chapter 1. Recall that a rule scheme is a rule that involves meta-variables standing for unspecified objects. An instance of a rule scheme is obtained by replacing these meta-variables with specific objects. We may now make these informal concepts precise using the mechanisms of parameterization and substitution.

A rule scheme is a configuration of the form

$$x_{1}, \ldots, x_{n} \mid \begin{array}{c} \vdash J_{1} \cdots J_{k} \end{array}$$

consisting of a rule prefixed by a finite set of parameters containing all of the parameters that may occur in the premises or conclusion of the rule.
scheme. No other parameters may occur in the rule other than those specified in its prefix. An instance of the rule scheme (3.1) is obtained by substituting objects a_1, \ldots, a_n for the parameters x_1, \ldots, x_n. For example, Rule (1.2b) may be presented as a rule scheme by writing it in the form

$$x \mid \frac{x \text{ nat}}{\text{succ}(x) \text{ nat}}.$$

Its instances, obtained by replacing the parameter, x, by an object, a, are rules of the form

$$\frac{a \text{ nat}}{\text{succ}(a) \text{ nat}}.$$

A rule scheme stands for the totality of its instances. Consequently, we say that a property, \mathcal{P}, is closed under a rule scheme iff it is closed under all of its instances. More precisely, \mathcal{P} is closed under a rule scheme of the form (3.1) iff for every choice of objects a_1, \ldots, a_n, if

$$\mathcal{P}([a_1, \ldots, a_n/x_1, \ldots, x_n]J_1) \text{ and } \ldots \text{ and } \mathcal{P}([a_1, \ldots, a_n/x_1, \ldots, x_n]J_k),$$

then

$$\mathcal{P}([a_1, \ldots, a_n/x_1, \ldots, x_n]J).$$

The judgement form defined by a set, \mathcal{R}, of rule schemes is defined to be the strongest judgement form closed under the rule schemes in \mathcal{R}.

3.3 Uniform Genericity

The parametric, or uniform, derivability judgement, written $\mathcal{X} \mid \Gamma \vdash_{\mathcal{R}} J$, states that the categorical judgement J is derivable from rules \mathcal{R} and hypotheses Γ uniformly in the parameters \mathcal{X}. (When Γ is empty, we abbreviate the uniform derivability judgement to $\mathcal{X} \mid \vdash_{\mathcal{R}} J$.) By “uniformly” we mean that the parameters \mathcal{X} are to be regarded as fresh objects, distinct from all others, in the derivation of J from Γ according to the rule schemes, \mathcal{R}. Evidence for $\mathcal{X} \mid \Gamma \vdash_{\mathcal{R}} J$ consists of a derivation scheme, ∇, involving the parameters in \mathcal{X} that composes rules in \mathcal{R} to obtain J from the assumptions in Γ. An instance of a derivation scheme is obtained by replacing the parameters of the scheme with chosen objects to obtain a derivation.

Just as the hypotheses Γ are to be considered “local” to ∇, so also are the parameters \mathcal{X}. We do not distinguish two derivation schemes that differ only in the choice of parameter names used to represent the fresh objects of the derivation. The parameters serve only as a kind of “pronoun”, referring to some unspecified concrete object to be determined later; the exact
“word” we use for the pronoun is not relevant, all that matters is that the referent be unambiguous.

For example, evidence for the uniform derivability judgement

\[x \mid x \text{ nat} \vdash_{(1,2)} \text{succ}(\text{succ}(x)) \text{ nat} \quad (3.2) \]

consists of the derivation scheme, \(\nabla \), given as follows:

\[
\frac{\bar{x} \text{ nat}}{\text{succ}(\bar{x}) \text{ nat}} \quad (3.3)
\]

We could just as well have used \(y \) throughout as a parameter of the scheme without affecting its meaning.

By choosing an object, \(a \), we obtain an instance

\[a \text{ nat} \vdash \text{succ}(\text{succ}(a)) \text{ nat}, \quad (3.4) \]

of the uniform derivability judgement. Similarly, the derivation scheme \(\nabla \) may be specialized to \(a \) to obtain the derivation

\[
\frac{\bar{a} \text{ nat}}{\text{succ}(\bar{a}) \text{ nat}} \quad (3.5)
\]

The resulting derivation is evidence for (3.4).

The parametric derivability judgement enjoys a collection of structural properties that follow directly from its meaning:

Renaming If \(\mathcal{X}, x \mid \Gamma \vdash J \), then \(\mathcal{X}, y \mid \Gamma \vdash J \), provided that \(y \notin \mathcal{X} \).

Proliferation If \(\mathcal{X} \mid \Gamma \vdash J \) and \(x \notin \mathcal{X} \), then \(\mathcal{X}, x \mid \Gamma \vdash J \).

Swapping If \(\mathcal{X}, x_1, x_2, \mathcal{X}_2 \mid \Gamma \vdash J \), then \(\mathcal{X}, x_2, x_1, \mathcal{X}_2 \mid \Gamma \vdash J \).

Duplication If \(\mathcal{X}, x, x \mid \Gamma \vdash J \), then \(\mathcal{X}, x \mid \Gamma \vdash J \).

Instantiation If \(\mathcal{X}, x \mid \Gamma \vdash J \), and \(\mathcal{X} \vdash a \text{ obj} \), then \(\mathcal{X} \mid [a/x] \Gamma \vdash [a/x] J \).

Renaming states that a uniform derivability judgement is invariant under renaming of parameters. With respect to the structural properties of the hypothetical judgement, proliferation corresponds to weakening, swapping corresponds to exchange, duplication corresponds to contraction, and instantiation corresponds to transitivity.
3.4 Non-Uniform Genericity

Theorem 3.1. The uniform derivability judgement is structural.

Proof. Renaming follows from the identification of two parametric judgements that differ only in the names of bound variables. Proliferation is a direct consequence of uniformity. Swapping and duplication are inherent in considering the parameters of the judgement to be a set. Instantiation may be proved by rule induction on the judgement \(\mathcal{X}, x \mid \Gamma \vdash_R J \), where \(x \notin \mathcal{X} \). Consider an arbitrary rule of the form (3.1), and suppose that we have evidence for each of the premises

\[
\mathcal{X}, x \mid \Gamma \vdash_R [a_1, \ldots, a_n/x_1, \ldots, x_n] J_i,
\]

where \(1 \leq i \leq k \). By the inductive hypothesis we have evidence for

\[
\mathcal{X} \mid [a/x] \Gamma \vdash_R [a/x][a_1, \ldots, a_n/x_1, \ldots, x_n] J_i,
\]

for each \(1 \leq i \leq k \). By suitable renaming the parameter \(x \) may be chosen apart from \(x_1, \ldots, x_n \), and hence does not occur in any premise of the rule. It follows that we have evidence for the judgement

\[
\mathcal{X} \mid [a/x] \Gamma \vdash_R [(a/x)a_1, \ldots, [a/x]a_n/x_1, x_n, \ldots, x_n] J_i.
\]

We may then re-instantiate the same rule scheme to obtain the conclusion

\[
\mathcal{X} \mid [a/x] \Gamma \vdash_R [(a/x)a_1, \ldots, [a/x]a_n/x_1, x_n, \ldots, x_n] J,
\]

which is to say

\[
\mathcal{X} \mid [a/x] \Gamma \vdash_R [a_1, \ldots, a_n/x_1, \ldots, x_n] J.
\]

\(\square \)

3.4 Non-Uniform Genericity

The *non-parametric*, or *non-uniform*, derivability judgement, \(\mathcal{X} \parallel \Gamma \vdash_R J \), where \(\mathcal{X} = x_1, \ldots, x_n \), states that for every *closed* instance \(a_1, \ldots, a_n \) of the parameters, the derivability judgement

\[
[a_1, \ldots, a_n/x_1, \ldots, x_n] \Gamma \vdash [a_1, \ldots, a_n/x_1, \ldots, x_n] J
\]

is valid. Since only closed instances are considered, evidence for non-uniform derivability may assign a different derivation for each instance. This is analogous to the distinction between admissibility and derivability.
discussed in Chapter 2. Whereas derivability is uniform (does not depend on the evidence for the hypotheses, if any), admissibility is non-uniform (depends on the evidence for the hypotheses to determine evidence for the conclusion).

Theorem 3.2. The non-uniform derivability judgement is structural.

Proof. This is an immediate consequence of the definition, using familiar properties of universal quantification and implication. □

Consequently, uniform derivability is stronger than non-uniform derivability.

Theorem 3.3. If $\mathcal{X} \ | \ \Gamma \vdash_R J$, then $\mathcal{X} \parallel \Gamma \vdash_R J$.

Proof. Follows directly from Theorem 3.1 on the previous page. □

3.5 Generic Inductive Definitions

A *generic inductive definition* is a generalization of a hypothetical inductive definition in which we permit expansion not only of the rules, but also of the set of active parameters, in each premise of a rule. A *generic hypothetical rule* has the form

$$
\frac{\mathcal{X} \mathcal{X}_1 | \Gamma \Gamma_1 \vdash J_1 \ldots \mathcal{X} \mathcal{X}_n | \Gamma \Gamma_n \vdash J_n}{\mathcal{X} | \Gamma \vdash J}.
$$

The set, \mathcal{X}, is the set of *global parameters* of the inference, and, for each $1 \leq i \leq n$, the set \mathcal{X}_i is the set of *fresh local parameters* of the ith premise. The local parameters are *fresh* in the sense that, by suitable renaming, they may be chosen to be disjoint from the global parameters of the inference. The pair $\mathcal{X} | \Gamma$ is called the *global context* of the rule, and each pair $\mathcal{X}_i | \Gamma_i$ is called the *local context* of the ith premise of the rule.

A generic rule is *pure* if it is stated for all choices of global context, subject only to the freshness requirement on local parameters. Such a rule may be written in *implicit form* as follows:

$$
\frac{\mathcal{X}_1 | \Gamma_1 \vdash J_1 \ldots \mathcal{X}_n | \Gamma_n \vdash J_n}{J}.
$$

This form of the rule stands for all rules of the form Rule (3.6) obtained by specifying the global context $\mathcal{X} | \Gamma$.

12:59PM DRAFT JANUARY 21, 2009
As with hypothetical inductive definitions, we regard a generic inductive definition as defining a *formal generic entailment*, written \(\mathcal{X} \mid \Gamma \vdash J \), that expresses uniform derivability with respect to the rules themselves. To ensure that the formal uniform derivability judgement is well-behaved, the following *structural rules* are admissible in any generic inductive definition:

\[
\frac{\mathcal{X} \mid \Gamma \vdash J}{\mathcal{X}, x \mid \Gamma \vdash J}
\] (3.8a)
\[
\frac{\mathcal{X}, x \mid \Gamma \vdash J \quad \mathcal{X} \vdash a \ \text{obj}}{\mathcal{X} \mid [a/x] \Gamma \vdash [a/x] J}
\] (3.8b)

Admissibility of the structural properties is assured if all rules are pure, otherwise it must be explicitly proved for each generic inductive definition.

The principle of rule induction for a generic inductive definition states that to show \(\mathcal{P}(\mathcal{X} \mid \Gamma \vdash J) \) whenever \(\mathcal{X} \mid \Gamma \vdash J \) is derivable, it is enough to show that \(\mathcal{P} \) is closed under the rules comprising the definition. Specifically, for each rule of the form (3.6), we must show that

\[
\text{if } \mathcal{P}(\mathcal{X} \mathcal{X}_1 \mid \Gamma \Gamma_1 \vdash J_1), \ldots, \mathcal{P}(\mathcal{X} \mathcal{X}_n \mid \Gamma \Gamma_n \vdash J_n), \text{ then } \mathcal{P}(\mathcal{X} \mid \Gamma \vdash J).
\]

Observe that, by our identification of two generic judgements that differ only in the names of their parameters, the property, \(\mathcal{P} \), is not permitted to distinguish between any two such judgements. This limits the class of properties that we may consider to those that are well-defined with respect to this identification, but experience shows that all natural properties (including those of interest in this book) respect this equivalence. This means that the proof of \(\mathcal{P}(\mathcal{X} \mid \Gamma \vdash J) \) need only be carried out for one particular choice of parameters, and that this choice may be tacitly assumed to satisfy any finite freshness requirements we may wish to impose.

3.6 Exercises
Chapter 4

Transition Systems

Transition systems are used to describe the execution behavior of programs by defining an abstract computing device with a set, \(S \), of states that are related by a transition judgement, \(\rightarrow \). The transition judgement describes how the state of the machine evolves during execution.

4.1 Transition Systems

An (ordinary) transition system is specified by the following judgements:

1. \(s \) state, asserting that \(s \) is a state of the transition system.
2. \(s \) final, where \(s \) state, asserting that \(s \) is a final state.
3. \(s \) initial, where \(s \) state, asserting that \(s \) is an initial state.
4. \(s \rightarrow s' \), where \(s \) state and \(s' \) state, asserting that state \(s \) may transition to state \(s' \).

We require that if \(s \) final, then for no \(s' \) do we have \(s \rightarrow s' \). In general, a state \(s \) for which there is no \(s' \in S \) such that \(s \rightarrow s' \) is said to be stuck, which may be indicated by writing \(s \not\rightarrow \). All final states are stuck, but not all stuck states need be final!

A transition sequence is a sequence of states \(s_0, \ldots, s_n \) such that \(s_0 \) initial, and \(s_i \rightarrow s_{i+1} \) for every \(0 \leq i < n \). A transition sequence is maximal iff \(s_n \not\rightarrow \), and it is complete iff it is maximal and, in addition, \(s_n \) final. Thus every complete transition sequence is maximal, but maximal sequences are not necessarily complete. A transition system is deterministic iff for every
state s there exists at most one state s' such that $s \rightarrow s'$, otherwise it is non-deterministic.

A labelled transition system over a set of labels, I, is a generalization of a transition system in which the single transition judgement, $s \rightarrow s'$ is replaced by an I-indexed family of transition judgements, $s \stackrel{i}{\rightarrow} s'$, where s and s' are states of the system. In typical situations the family of transition relations is given by a simultaneous inductive definition in which each rule may make reference to any member of the family.

It is often necessary to consider families of transition relations in which there is a distinguished unlabelled transition, $s \rightarrow s'$, in addition to the indexed transitions. It is sometimes convenient to regard this distinguished transition as labelled by a special, anonymous label not otherwise in I. For historical reasons this distinguished label is often designated by τ or ϵ, but we will simply use an unadorned arrow. The unlabelled form is often called a silent transition, in contrast to the labelled forms, which announce their presence with a label.

4.2 Iterated Transition

Let $s \rightarrow s'$ be a transition judgement, whether drawn from an indexed set of such judgements or not.

The iteration of transition judgement, $s \rightarrow^* s'$, is inductively defined by the following rules:

\[
\begin{align*}
\frac{}{s \rightarrow^* s} & \quad (4.1a) \\
\frac{s \rightarrow s' \quad s' \rightarrow^* s''}{s \rightarrow^* s''} & \quad (4.1b)
\end{align*}
\]

It is easy to show that iterated transition is transitive: if $s \rightarrow^* s'$ and $s' \rightarrow^* s''$, then $s \rightarrow^* s''$.

The principle of rule induction for these rules states that to show that $P(s, s')$ holds whenever $s \rightarrow^* s'$, it is enough to show these two properties of P:

1. $P(s, s)$.
2. if $s \rightarrow s'$ and $P(s', s'')$, then $P(s, s'')$.

The first requirement is to show that P is reflexive. The second is to show that P is closed under head expansion, or converse evaluation. Using this principle, it is easy to prove that \rightarrow^* is reflexive and transitive.
4.3 Simulation and Bisimulation

The \(n \)-times iterated transition judgement, \(s \mapsto^n s' \), where \(n \geq 0 \), is inductively defined by the following rules.

\[
\begin{align*}
\frac{}{s \mapsto^0 s} \\
\frac{s \mapsto s' \quad s' \mapsto^n s''}{s \mapsto^{n+1} s''}
\end{align*}
\]

Theorem 4.1. For all states \(s \) and \(s' \), \(s \mapsto^* s' \) iff \(s \mapsto^k s' \) for some \(k \geq 0 \).

Finally, we write \(s \downarrow \) to indicate that there exists some \(s' \) final such that \(s \mapsto^* s' \).

4.3 Simulation and Bisimulation

A strong simulation between two transition systems \(\mapsto_1 \) and \(\mapsto_2 \) is given by a binary relation, \(s_1 S s_2 \), between their respective states such that if \(s_1 S s_2 \), then \(s_1 \mapsto_1 s'_1 \) implies \(s_2 \mapsto_2 s'_2 \) for some state \(s'_2 \) such that \(s'_1 S s'_2 \). Two states, \(s_1 \) and \(s_2 \), are strongly similar iff there is a strong simulation, \(S \), such that \(s_1 S s_2 \). Two transition systems are strongly similar iff each initial state of the first is strongly similar to an initial state of the second. Finally, two states are strongly bisimilar iff there is a single relation \(S \) such that both \(S \) and its converse are strong simulations.

A strong simulation between two labelled transition systems over the same set, \(I \), of labels consists of a relation \(S \) between states such that for each \(i \in I \) the relation \(S \) is a strong simulation between \(\mapsto^i_1 \) and \(\mapsto^i_2 \). That is, if \(s_1 S s_2 \), then \(s_1 \mapsto^i_1 s'_1 \) implies \(s_2 \mapsto^i_2 s'_2 \) for some \(s'_2 \) such that \(s'_1 S s'_2 \). In other words the simulation must preserve labels, and not just transitions.

The requirements for strong simulation are rather stringent: every step in the first system must be mimicked by a similar step in the second, up to the simulation relation in question. This means, in particular, that a sequence of steps in the first system can only be simulated by a sequence of steps of the same length in the second—there is no possibility of performing "extra" work to achieve the simulation.

A weak simulation between transition systems is a binary relation between states such that if \(s_1 S s_2 \), then \(s_1 \mapsto_1 s'_1 \) implies \(s_2 \mapsto^*_2 s'_2 \) for some \(s'_2 \) such that \(s'_1 S s'_2 \). That is, every step in the first may be matched by zero or more steps in the second. A weak bisimulation is such that both it and its converse are weak simulations. We say that states \(s_1 \) and \(s_2 \) are weakly (bi)similar iff there is a weak (bi)simulation \(S \) such that \(s_1 S s_2 \).
The corresponding notion of weak simulation for labelled transitions involves the silent transition. The idea is that to weakly simulate the labelled transition \(s_1 \xrightarrow{i} s'_1 \), we do not wish to permit multiple labelled transitions between related states, but rather to permit any number of unlabelled transitions to accompany the labelled transition. A relation between states is a weak simulation iff it satisfies both of the following conditions whenever \(s_1 S s_2 \):

1. If \(s_1 \xrightarrow{i} s'_1 \), then \(s_2 \xrightarrow{*} s'_2 \) for some \(s'_2 \) such that \(s'_1 S s'_2 \).

2. If \(s_1 \xrightarrow{i} s'_1 \), then \(s_2 \xrightarrow{*} s'_2 \) for some \(s'_2 \) such that \(s'_1 S s'_2 \).

That is, every silent transition must be mimicked by zero or more silent transitions, and every labelled transition must be mimicked by a corresponding labelled transition, preceded and followed by any number of silent transitions. As before, a weak bisimulation is a relation between states such that both it and its converse are weak simulations. Finally, two states are weakly (bi)similar iff there is a weak (bi)simulation between them.

4.4 Exercises

1. Prove that \(S \) is a weak simulation for the ordinary transition system \(\xrightarrow{i} \) iff \(S \) is a strong simulation for \(\xrightarrow{*} \).