
deterministic, the fact that we constructed c∗ by running A is not a problem: it would
make the same mistakes if re-run from scratch on the same sequence and same target.
Therefore, A makes d mistakes on this σ and c∗.

5.8.2 The Halving Algorithm

If we are not concerned with running time, a simple algorithm that guarantees to make at
most log2(|H|) mistakes for a target belonging to any given class H is called the halving
algorithm. This algorithm simply maintains the version space V ⊆ H consisting of all
h ∈ H consistent with the labels on every example seen so far, and predicts based on
majority vote over these functions. Each mistake is guaranteed to reduce the size of the
version space V by at least half (hence the name), thus the total number of mistakes is
at most log2(|H|). Note that this can be viewed as the number of bits needed to write a
function in H down.

5.8.3 The Perceptron Algorithm

Earlier we described the Perceptron algorithm as a method for finding a linear separator
consistent with a given training set S. However, the Perceptron algorithm also operates
naturally in the online setting as well.

Recall that the basic assumption of the Perceptron algorithm is that the target func-
tion can be described by a vector w∗ such that for each positive example x we have
xTw∗ ≥ 1 and for each negative example x we have xTw∗ ≤ −1. Recall also that we can
interpret xTw∗/|w∗| as the distance of x to the hyperplane xTw∗ = 0. Thus, we can view
our assumption as stating that there exists a linear separator through the origin with all
positive examples on one side, all negative examples on the other side, and all examples at
distance at least γ = 1/|w∗| from the separator, where γ is called the margin of separation.

The guarantee of the Perceptron algorithm will be that the total number of mistakes is
at most (R/γ)2 where R = maxt |xt| over all examples xt seen so far. Thus, if there exists
a hyperplane through the origin that correctly separates the positive examples from the
negative examples by a large margin relative to the radius of the smallest ball enclosing
the data, then the total number of mistakes will be small. The algorithm, restated in the

143

online setting, is as follows.

The Perceptron Algorithm: Start with the all-zeroes weight vector w = 0. Then, for
t = 1, 2, . . . do:

1. Given example xt, predict sgn(xTt w).

2. If the prediction was a mistake, then update:

(a) If xt was a positive example, let w← w + xt.

(b) If xt was a negative example, let w← w − xt.

The Perceptron algorithm enjoys the following guarantee on its total number of mis-
takes.

Theorem 5.10 On any sequence of examples x1,x2, . . ., if there exists a vector w∗ such
that xTt w∗ ≥ 1 for the positive examples and xTt w∗ ≤ −1 for the negative examples (i.e.,
a linear separator of margin γ = 1/|w∗|), then the Perceptron algorithm makes at most
R2|w∗|2 mistakes, where R = maxt |xt|.

Proof: Fix some consistent w∗. We will keep track of two quantities, wTw∗ and |w|2.
First of all, each time we make a mistake, wTw∗ increases by at least 1. That is because
if xt is a positive example, then

(w + xt)
Tw∗ = wTw∗ + xTt w∗ ≥ wTw∗ + 1,

by definition of w∗. Similarly, if xt is a negative example, then

(w − xt)
Tw∗ = wTw∗ − xTt w∗ ≥ wTw∗ + 1.

Next, on each mistake, we claim that |w|2 increases by at most R2. Let us first consider
mistakes on positive examples. If we make a mistake on a positive example xt then we
have

(w + xt)
T (w + xt) = |w|2 + 2xTt w + |xt|2 ≤ |w|2 + |xt|2 ≤ |w|2 +R2,

where the middle inequality comes from the fact that we made a mistake, which means
that xTt w ≤ 0. Similarly, if we make a mistake on a negative example xt then we have

(w − xt)
T (w − xt) = |w|2 − 2xTt w + |xt|2 ≤ |w|2 + |xt|2 ≤ |w|2 +R2.

Note that it is important here that we only update on a mistake.

So, if we make M mistakes, then wTw∗ ≥ M , and |w|2 ≤ MR2, or equivalently,
|w| ≤ R

√
M . Finally, we use the fact that wTw∗/|w∗| ≤ |w| which is just saying that

144

the projection of w in the direction of w∗ cannot be larger than the length of w. This
gives us:

M/|w∗| ≤ R
√
M√

M ≤ R|w∗|
M ≤ R2|w∗|2

as desired.

5.8.4 Extensions: Inseparable Data and Hinge Loss

We assumed above that there exists a perfect w∗ that correctly classifies all the exam-
ples, e.g., correctly classifies all the emails into important versus non-important. This
is rarely the case in real-life data. What if even the best w∗ isn’t quite perfect? We
can see what this does to the above proof: if there is an example that w∗ doesn’t cor-
rectly classify, then while the second part of the proof still holds, the first part (the dot
product of w with w∗ increasing) breaks down. However, if this doesn’t happen too of-
ten, and also xTt w∗ is just a “little bit wrong” then we will only make a few more mistakes.

To make this formal, define the hinge-loss of w∗ on a positive example xt as max(0, 1−
xTt w∗). In other words, if xTt w∗ ≥ 1 as desired then the hinge-loss is zero; else, the hinge-
loss is the amount the LHS is less than the RHS.21 Similarly, the hinge-loss of w∗ on a
negative example xt is max(0, 1 + xTt w∗). Given a sequence of labeled examples S, define
the total hinge-loss Lhinge(w

∗, S) as the sum of hinge-losses of w∗ on all examples in S.
We now get the following extended theorem.

Theorem 5.11 On any sequence of examples S = x1,x2, . . ., the Perceptron algorithm
makes at most

min
w∗

(
R2|w∗|2 + 2Lhinge(w

∗, S)
)

mistakes, where R = maxt |xt|.

Proof: As before, each update of the Perceptron algorithm increases |w|2 by at most R2,
so if the algorithm makes M mistakes, we have |w|2 ≤MR2.

What we can no longer say is that each update of the algorithm increases wTw∗ by
at least 1. Instead, on a positive example we are “increasing” wTw∗ by xTt w∗ (it could
be negative), which is at least 1 − Lhinge(w

∗,xt). Similarly, on a negative example we
“increase” wTw∗ by −xTt w∗, which is also at least 1 − Lhinge(w∗,xt). If we sum this up
over all mistakes, we get that at the end we have wTw∗ ≥ M − Lhinge(w∗, S), where we
are using here the fact that hinge-loss is never negative so summing over all of S is only
larger than summing over the mistakes that w made.

21This is called “hinge-loss” because as a function of xTt w
∗ it looks like a hinge.

145

Finally, we just do some algebra. Let L = Lhinge(w
∗, S). So we have:

wTw∗/|w∗| ≤ |w|
(wTw∗)2 ≤ |w|2|w∗|2

(M − L)2 ≤ MR2|w∗|2

M2 − 2ML+ L2 ≤ MR2|w∗|2

M − 2L+ L2/M ≤ R2|w∗|2

M ≤ R2|w∗|2 + 2L− L2/M ≤ R2|w∗|2 + 2L

as desired.

5.9 Online to Batch Conversion

Suppose we have an online algorithm with a good mistake bound, such as the Perceptron
algorithm. Can we use it to get a guarantee in the distributional (batch) learning setting?
Intuitively, the answer should be yes since the online setting is only harder. Indeed, this
intuition is correct. We present here two natural approaches for such online to batch
conversion.

Conversion procedure 1: Random Stopping. Suppose we have an online algorithm
A with mistake-bound M . Say we run the algorithm in a single pass on a sample S of size
M/ε. Let Xt be the indicator random variable for the event that A makes a mistake on

example xt. Since
∑|S|

t=1Xt ≤ M for any set S, we certainly have that E[
∑|S|

t=1Xt] ≤ M
where the expectation is taken over the random draw of S from D|S|. By linearity of
expectation, and dividing both sides by |S| we therefore have:

1

|S|

|S|∑
t=1

E[Xt] ≤ M/|S| = ε. (5.1)

Let ht denote the hypothesis used by algorithm A to predict on the tth example. Since
the tth example was randomly drawn from D, we have E[errD(ht)] = E[Xt]. This means
that if we choose t at random from 1 to |S|, i.e., stop the algorithm at a random time, the
expected error of the resulting prediction rule, taken over the randomness in the draw of
S and the choice of t, is at most ε as given by equation (5.1). Thus we have:

Theorem 5.12 (Online to Batch via Random Stopping) If an online algorithm A
with mistake-bound M is run on a sample S of size M/ε and stopped at a random time
between 1 and |S|, the expected error of the hypothesis h produced satisfies E[errD(h)] ≤ ε.

Conversion procedure 2: Controlled Testing. A second natural approach to us-
ing an online learning algorithm A in the distributional setting is to just run a series of
controlled tests. Specifically, suppose that the initial hypothesis produced by algorithm
A is h1. Define δi = δ/(i + 2)2 so we have

∑∞
i=0 δi = (π

2

6
− 1)δ ≤ δ. We draw a set of

146

