
Algorithms for Data Science: Lecture on Interactive Clustering

Barna Saha

1 Finding the Maximum Likelihood Clustering of V with faulty
oracle

We can view the clustering problem as following. We have an undirected graph G(V ≡ [n], E),
such that G is a union of k disjoint cliques Gi(Vi, Ei), i = 1, . . . , k. The subsets Vi ∈ [n] are
unknown to us; they are called the clusters of V . The adjacency matrix of G is a block-diagonal
matrix. Let us denote this matrix by A = (ai,j).

Now suppose, each edge of G is erased independently with probability p, and at the same
time each non-edge is replaced with an edge with probability p. Let the resultant adjacency
matrix of the modified graph be Z = (zi,j). The aim is to recover A from Z.

Lemma 1. The maximum likelihood recovery is given by the following:

max
S`,`=1,···:V =t`S`

∏
`

∏
i,j∈S`,i 6=j

P+(zi,j)
∏

r,t,r 6=t

∏
i∈Sr,j∈St

P−(zi,j)

= max
S`,`=1,···:V =t`=1S`

∏
`

∏
i,j∈S`,i 6=j

P+(zi,j)
P−(zi,j)

∏
i,j∈V,i 6=j

P−(zi,j).

where, P+(1) = 1− p, P+(0) = p, P−(1) = p, P−(0) = 1− p.

Hence, the ML recovery asks for,

max
S`,`=1,···:V =t`=1S`

∑
`

∑
i,j∈S`,i 6=j

ln P+(zi,j)
P−(zi,j) .

Note that,
ln P+(0)
P−(0) = − ln P+(1)

P−(1) = ln p

1− p.

Hence the ML estimation is,

max
S`,`=1,···:V =t`=1S`

∑
`

∑
i,j∈S`,i 6=j

ωi,j , (1)

where ωi,j = 2zi,j − 1, i 6= j, i.e., ωi,j = 1, when zi,j = 1 and ωi,j = −1 when zi,j = 0, i 6= j.
Further ωi,i = zi,i = 0, i = 1, . . . , n.

Note that (1) is equivalent to finding correlation clustering in G with the objective of
maximizing the consistency with the edge labels, that is we want to maximize the total number
of positive intra-cluster edges and total number of negative inter-cluster edges [1, 3, 2]. This can
be seen as follows.

max
S`,`=1,···:V =t`=1S`

∑
`

∑
i,j∈S`,i 6=j

ωi,j

≡ max
S`,`=1,···:V =t`=1S`

[∑
`

∑
i,j∈S`,i 6=j

∣∣(i, j) : ωi,j = +1
∣∣− ∣∣(i, j) : ωi,j = −1

∣∣]+
∑

i,j∈V,i 6=j

∣∣(i, j) : ωi,j = −1
∣∣

1

= max
S`,`=1,···:V =t`=1S`

[∑
`

∑
i,j∈S`,i 6=j

∣∣(i, j) : ωi,j = +1
∣∣+ [∑

r,t:r 6=t

∣∣(i, j) : i ∈ Sr, j ∈ St, ωi,j = −1
∣∣].

Therefore (1) is same as correlation clustering. Also, note that, we have a random instance of
correlation clustering here, and not a worst case instance.

1.1 Algorithm

We assume the number of clusters k is known. For unknown k, see [4].

Theorem 1. There exists a polynomial time algorithm with query complexity Õ(nk2

(2p−1)4) for
Crowd-Cluster with error probability p, which recovers all clusters of size at least Ω(k log n

(2p−1)4).

Algorithm 2. Let N = 64k2 log n
(1−2p)4 . We define two thresholds T (a) = pa + 6

(1−2p)
√
N logn and

θ(a) = 2p(1− p)a+ 2
√
N logn. The algorithm is as follows.

Phase 1-2C: Select a Small Subgraph. Initially we have an empty graph G′ = (V ′, E′), and all
vertices in V are unassigned to any cluster.

1. Select X new vertices arbitrarily from the unassigned vertices in V \ V ′ and add them to V ′
such that the size of V ′ is N . If there are not enough vertices left in V \ V ′, select all of them
in X. Update G′ = (V ′, E′) by querying for every (u, v) such that u ∈ X and v ∈ V ′ and
assigning a weight of ω(u, v) = +1 if the query answer is “yes” and ω(u, v) = −1 otherwise .

2. Let N+(u) denote all the neighbors of u in G′ connected by +1-weighted edges. We now
cluster G′. Select every u and v such that u 6= v and |N+(u)|, |N+(v)| ≥ T (|V ′|). Then if
|N+(u)\N+(v)|+|N+(v)\N+(u)| ≤ θ(|V ′|) (the symmetric difference of these neighborhoods)
include u and v in the same cluster. Include in active all clusters formed in this step that have
size at least 64k log n

(1−2p)4 . If there is no such cluster, abort. Remove all vertices in such clusters
from V ′ and any edge incident on them from E′.

Phase 3C: Growing the Active Clusters.

1. For every unassigned vertex v ∈ V \ V ′, and for every cluster C ∈ active, pick 16 log n
(1−2p)2 distinct

vertices, u1, u2,, ul in the cluster and query v with them. If the majority of these answers
are “yes”, then include v in C.

2. Output all the clusters in active and move to Phase 1 step (1) to obtain the remaining clusters.

Analysis. Note that at every iteration, we consider a set of X new vertices from V \ V ′ which
have not been previously included in any cluster considered in active, and query all pairs in
X × V ′ \ V . Let A denote the fixed n × n matrix, where if (i, j), i, j ∈ V is queried by the
algorithm in any iteration, we include the query result there (+1 or −1), else the entry is empty
which indicates that the pair was not queried by the entire run of the algorithm. This matrix A
has the property that for any entry (i, j), if i and j belong to the same cluster and queried then
A(i, j) = +1 with probability (1− p) and A(i, j) = −1 with probability p. On the other hand,
if i and j belong to different clusters and queried then A(i, j) = −1 with probability (1 − p)
and A(i, j) = +1 with probability p. Note that the adjacency matrix of G′ in any iteration is a
submatrix of A which has no empty entry.

We first look at Phase 1-2C. At every iteration, our algorithm selects a submatrix of A
corresponding to V ′ × V ′ after step 1. This submatrix of A has no empty entry. Let us call
it A′. We show that if V ′ contains any subcluster of size ≥ 64k log n

(2p−1)4 , it is retrieved by step 2
with probability at least 1 − 1

n2 . In that case, the iteration succeeds. Now the submatrices
from one iteration to the other iteration can overlap, so we can only apply union bound to
obtain the overall success probability, but that suffices. The probability that in step 2, the
algorithm fails to retrieve any cluster of size at least 64k log n

(2p−1)4 in any iteration is at most 1
n2 . The

2

number of iterations is at most k < n, since in every iteration except possibly for the last one, V ′
contains at least one subcluster of that size by a simple pigeonhole principle. This is because in
every iteration except possibly for the last one |V ′| = 64k2 log n

(2p−1)4 , and there are at most k clusters.
Therefore, the probability that there exists at least one iteration which fails to retrieve the
“large” clusters is at most k

n2 ≤ 1
n by union bound. Thus all the iterations will be successful in

retrieving the large clusters with probability at least 1− 1
n .

Now, following the same argument as Lemma 3, each such cluster will be grown completely
by Phase 3-C step (1), and will be output correctly in Phase 3-C step 2.

Lemma 2. Let c = 64
(1−2p)4 . Whenever G′ contains a subcluster of size ck logn, it is retrieved

by Algorithm 2 in Phase 1-2C with high probability.

Proof. Consider a particular iteration. Let N+(u) denote all the neighbors of u in G′ connected
by +1 edges. Let A′ denote the corresponding submatrix of A corresponding to G′. We have
|V ′| ≤ N (|V ′| = N except possibly for the last iteration). Assume, |V ′| = N ′. Also |V | = n.

Let Cu denote the cluster containing u. We have

E[|N+(u)|] = (1− p)|Cu|+ p(N ′ − |Cu|) = pN ′ + (1− 2p)|Cu|

Using the Chernoff Bound

Pr(|N+(u)| ∈ pN ′ + (1− 2p)|Cu| ± 2
√
N logn) ≥ 1− 1

n4

Therefore for all u such that |Cu| ≥ 8
√

N log n
(1−2p)2 , we have |N+(u)| > pN ′ + 6

(1−2p)
√
N logn =

T (|V ′|), and for all u such that |Cu| ≤ 4
√

N log n
(1−2p)2 , we have |N+(u)| < pN ′ + 6

(1−2p)
√
N logn with

probability at least 1− 1
n3 by union bound.

Consider all u such that |N+(u)| > T (|V ′|). Then with probability at least 1− 1
n3 , we have

|Cu| > 4
√

N log n
(1−2p)2 . Let us call this set U . For every u, v ∈ U, u 6= v, the algorithm computes the

symmetric difference of N+(u) and N+(v) which is

1. 2p(1− p)N ′ on expectation if u and v belong to the same cluster. And again applying the
Chernoff bound, it is at most 2p(1− p)N ′ + 2

√
N logn with probability at least 1− 1

n4 .

2. (p2 +(1−p)2)(|Cu|+ |Cv|)+2p(1−p)(N ′−|Cu|−|Cv|) = 2p(1−p)N ′+(1−2p)2(|Cu|+ |Cv|)
on expectation if u and v belong to different clusters. Again using the Chernoff bound, it
is at least 2p(1− p)N ′+ (1− 2p)2(|Cu|+ |Cv|)− 2

√
N logn with probability at least 1− 1

n4 .

Therefore, for all u and v, either of the above two inequalities fail with probability at most
1

n2 .
Now, since for all u if |N+(u)| > T (|V ′|) then |Cu| > 4

√
N log n

(1−2p)2 with probability 1− 1
n3 , we

get
for every u and v in U , if the symmetric difference of N+(u) and N+(v) is ≤ 2p(1− p)N ′ +

2
√
N logn = θ(|V ′|), then u and v must belong to the same cluster with probability at least

1− 1
n2 − 1

n3 ≥ 1− 2
n2 .

Hence, all subclusters of G′ that have size at least 8
√

N log n
(1−2p)2 will be retrieved correctly with

probability at least 1− 2
n2 . Now since N ′ = N = 64k2 log n

(1−2p)4 for all but possibly the last iteration,
we have 8

√
N log n

(1−2p)2 = 64k log n
(1−2p)4 . Moreover, since there are at most k clusters in G and hence in G′,

there exists at least one subcluster of size 64k log n
(1−2p)4 in G′ in every iteration except possibly the

last one, which will be retrieved.
Then, there could be at most k < n iterations. The probability that in one iteration, the

algorithm will fail to retrieve a large cluster by our analysis is at most 2
n2 . Hence, by union

bound over the iterations, the algorithm will successfully retrieve all clusters in Phase 1-2C with
probability at least 1− 2

n .

3

Now, following the argument of Lemma 3, each subcluster of size 64k log n
(1−2p)4 will be grown

completely by Phase 3-C step (1).

Lemma 3. The list active contains all the true clusters of V of size ≥ c′ logn at the end of the
algorithm with high probability.

Proof. From Lemma 2, any cluster that is added to active in Phase 2 is a subset of some original
cluster in V with high probability, and has size at least 64k log n

(1−2p)4 . Moreover, whenever G′ contains
a subcluster of V of that size, it is retrieved by the algorithm and added to active.

When a vertex v is added to a cluster C in active, we have |C| ≥ ck logn at that time, and
there exist l = ck logn distinct members of C, say, u1, u2, .., ul such that majority of the queries
of v with these vertices returned +1. Consider the situation that v 6∈ C. Then the expected
number of queries among the l queries that had an answer “yes” (+1) is lp. We now use the
following version of the Chernoff bound.

Lemma 4 (Chernoff Bound). Let X1, X2, ..., Xn be independent binary random variables, and
X =

∑n
i=1Xi with E[X] = µ. Then for any ε > 0

Pr[X ≥ (1 + ε)µ] ≤ exp
(
− ε2

2 + ε
µ
)

and,

Pr[X ≤ (1− ε)µ] ≤ exp
(
− ε2

2 µ
)

Hence, by the application of the Chernoff bound, Pr(v added to C | v 6∈ C) ≤ e
−lp

(1
2p −1)2

2+(1
2p −1) ≤

1
n3 .

On the other hand, if there exists a cluster C ∈ active such that v ∈ C, then while growing C,
v will be added to C (either v already belongs to G′, or is a newly considered vertex). This again
follows by the Chernoff bound. Here the expected number of queries to be answered “yes” is (1−
p)l. Hence the probability that less than l

2 queries will be answered yes is Pr(v not included in C |
v ∈ C) ≤ exp(−c logn(1 − p) (1−2p)2

8(1−p)2) ≤ exp(− 2
(1−p) logn) ≤ 1

n2 . Therefore, for all v, if v is
included in a cluster in active, the assignment is correct with probability at least 1− 1

n . Also, the
assignment happens as soon as such a cluster is formed in active and v is explored (whichever
happens first).

Furthermore, two clusters in active cannot be merged. Suppose, if possible there are two
clusters C1 and C2 which ought to be subset of the same cluster in V . Let without loss of
generality C2 is added later in active. Consider the first vertex v ∈ C2 that is considered by our
algorithm. If C1 is already there in active at that time, then with high probability v will be added
to C1 in Phase 3. Therefore, C1 must have been added to active after v has been considered by
our algorithm and added to G′. Now, at the time C1 is added to A in Phase 2, v ∈ V ′, and again
v will be added to C1 with high probability in Phase 2–thereby giving a contradiction.

This completes the proof of the lemma.

Running time of the algorithm is dominated by the time required to run step 2 of Phase
1-2C. Computing trivially, finding the symmetric differences of +1 neighborhoods all

(N
2
)
pairs

requires time O(N3). We can keep a sorted list of +1 neighbors of every vertex is O(N2 logn)
time. Then, for every pair, it takes O(N) time to find the symmetric difference. This can be
reduced to O(Nω) using fast matrix multiplication to compute set intersection where ω ≤ 2.373.
Moreover, since each invocation of this step removes one cluster, there can be at most k calls
to it and for every vertex, time required in Phase 3C over all the rounds is O(k log n

(1−2p)2). This
gives an overall running time of O(nk log n

(1−2p)2 + kNω) = O(nk log n
(1−2p)2 + k1+2ω) = O(nk log n

(1−2p)2 + k5.746).
Without fast matrix multiplication, the running time is O(nk log n

(1−2p)2 + k7).

4

The query complexity of the algorithm is O(nk2 log n
(2p−1)4) since each vertex is involved in at most

O(k2 log n
(2p−1)4) queries within G′ and O(k log n

(2p−1)2) across the active clusters. In fact, in each iteration,
the number of queries within G′ is O(N2) and since there could be at most k rounds, the overall
query complexity is O(nk log n

(2p−1)2 + min (nk2 log n
(2p−1)4 , kN

2)). Thus we get Theorem 1.

References

[1] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1-3):89–113,
2004.

[2] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Correlation clustering with noisy
partial information. In Proceedings of The 28th Conference on Learning Theory, pages
1321–1342, 2015.

[3] C. Mathieu and W. Schudy. Correlation clustering with noisy input. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, January 17-19, 2010, pages 712–728, 2010.

[4] A. Mazumdar and B. Saha. Clustering with noisy queries. In Advances in Neural Information
Processing Systems, pages 5790–5801, 2017.

5

	Finding the Maximum Likelihood Clustering of V with faulty oracle
	Algorithm

