
Hashing	

Barna	Saha	



Random	Load	Balancing	

Suppose	a	content	delivery	network	like	YouTube	
receives	a	million	content	requests	per	minute.	Each	
request	needs	to	be	served	from	one	of	the	1000	
servers.	How	should	one	distribute	the	load	so	that	
no	server	is	overloaded.	
– Assign	each	request	to	a	random	server.	



Random	Load	Balancing	

•  Let	there	be	“n”	requests	and	“k”	servers	
•  Consider	server	“i”	
•  Define	an	indicator	random	variable								which	
will	be	1	if	request	j	is	assigned	to	server	i	and	0	
otherwise.		

•  Load	on	machine	i:	

•  																																								[Apply	the	Chernoff	Bound]	



Random	Load	Balancing	

•  Applying	the	Chernoff	Bound	we	get	



Random	Load	Balancing	

•  Apply	Union	Bound	

•  Prob(there	exists	at	least	one	server	which	is	
overloaded)		



Balls	in	Bin	

•  Suppose	you	throw	m	balls	into	n	bins	
randomly	and	uniformly,	m	>=n.	

•  If	m=n,	then	the	expected	number	of	balls	in	
each	bin	is	just	one.	

•  EXTRA	CREDIT	[20]:	Show	that	the	maximum	
number	of	balls	in	any	bin	is															with	
probability									.	

	



1	

5	

3	

7	8	 6	

4	

2	

Throw	the	balls	uniformly	at	random	in	the	bins	



1	

5	

3	

7	

8	

6	

4	

2	

Throw	the	balls	uniformly	at	random	in	the	bins	

Which	bin	does	Ball	7	occupy?	



Hash	Funcbon	

•  A	hash	funcbon	from	a	universe	
U=[0,1,2,..,m-1]	into	a	range	[0,1,2,..,n-1]	can	
be	thought	of	as	a	way	of	placing	m	balls	into	
n	bins.	

•  We	have	a	family	of	hash	funcbons	H	and	we	
choose	one	funcbon	from	this	family	
uniformly	at	random.	



Perfectly	Random	Hash	Funcbons	

•  A	family	of	hash	funcbons	H	is	perfectly	
random	if	the	following	holds	

	



Perfectly	Random	Hash	Funcbons	

•  A	family	of	hash	funcbons	H	is	perfectly	
random	if	the	following	holds	

	

Finding	hash	funcbons	that	are	perfectly	random	is	
difficult	in	pracbce.	Also,	storage	and	bme	required	
to	compute	such	hash	funcbons	become	
prohibibve.	



Strongly	Universal	Hash	Family	

•  Let							be	a	universe	with																																								
and	let																																	.	A	family	of	hash	
funcbons						is	said	to	be	strongly				-universal	
if	for	any	element																																			,	any	
values																																	,	and	a	hash	funcbon	
h	chosen	uniformly	at	random	from					,	we	
have									



2-Universal	Hash	Family	



Applicabons	

•  Password	Checker	
– Stores	a	dicbonary	of	unacceptable	password		
– When	a	user	tries	to	set	a	password,	it	is	first	
checked	with	this	dicbonary	

•  Possible	solubons	
– Store	the	passwords	in	alphabebcal	order	

•  Binary	search		
– Use	Hash	funcbon	and	store	it	in	a	hashtable	

	



Applicabons	

•  Password	Checker	
–  Stores	a	dicbonary	of	unacceptable	password		
– When	a	user	tries	to	set	a	password,	it	is	first	checked	
with	this	dicbonary	

•  Possible	solubons	
–  Store	the	passwords	in	alphabebcal	order	

•  Binary	search	O(log	m)	
– Use	Hash	funcbon	and	store	it	in	a	hash	table	

•  O(1)	expected	bme	
	



Applicabons	
•  Spam	Detecbon	
–  Prevents	sending	spam	emails	to	the	inbox	by	keeping	
a	dicbonary	of	acceptable	email	ids.	

– When	an	email	arrives	check	if	it	belongs	to	the	list	
and	accept	if	it	does.		

•  Possible	Solubons	
–  Store	the	email	ids	in	alphabebcal	order	

•  Binary	search	O(log	m)	
– Use	Hash	funcbon	and	store	it	in	a	hash	table	

•  O(1)	expected	bme	



Limitabons	

•  Worst	case	bme	could	be	large	
•  Space	usage	may	not	be	ideal	



Bloom	Filter	

•  Hash	table	has	size	“m”	but	now	it	stores	only	
bits	
– Saves	space	

•  Worst	case	bme	to	search	is	O(1)	
– Saves	bme	



Bloom	Filter	

What	are	the	false	posibve	and	false	negabve	rates?	


