Applications of Chernoff Bound



Estimating Sample Size

Let p be the unknown probability that a gene
mutates.

Entire dataset size=N
Sample size=n
In the sample 1 of them have been mutated

Estimated probability of mutation

N Is this a reliable
p = n estimate?



When is ? = — a reliable estimate?

S|

* Must satisfy
Prob(|p —p| > 6) <~

Confidence parameter

° OI‘, \

Prob(p € [p — 6,p+ d]) > (1 — )

Error tolerance



Estimating Sample Size

* Define indicator random variables X ; which is
1 if the i-th sampled element has the desired
property (mutation/i-phone 8 query..) and O
otherwise. n

E[X]=E[Y Xi]=nE[X;] =nProb(X; =1) =np



Estimating Sample Size

P e Prob(p—p| > 6)
= Prob(|np — np| > nd)
= Prob(|X — E|X]| > nd)

= Prob(| X — E|X]| > E[X]é)
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Estimating Sample Size
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Estimating Sample Size

P’I“Ob(ﬁ—p >5)§26 3

* Wewant 2¢ 3 <7
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Estimating Sample Size
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Repeating Reservoir Sampling
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Repeating Reservoir Sampling

Number of items=100

According to the proof of the reservoir
sampling each item has 1/100 chance of being
stored in the reservoir

Consider the 1t item and define an indicator
random variable X,; which is 1 if the the 1st
item is stored at the end of the algorithm on

its i-th run.
We run the algorithm “m” times.



Repeating Reservoir Sampling

e Define X = ZXi

E[X] = ZE[XZ] - %

* We want the frequency of all items to be

within 100 + 500 with high probability.



Repeating Reservoir Sampling

e We wan;%the fr%equency of all items to be

within 100 + 200 with high probability.

e Forthe 1%titem

Prob(|X — E[X]| > 0.5 x E|X]) < 2e™ 1200



Repeating Reservoir Sampling

 We want the frequency of all items to be

within 7~ &+ ™ with high probability.
100 200

e Forthe 1stitem

Prob(|X — E[X]| > 0.5 * E[X]) < 2e~ 1200
* For the 2" item

Prob(|X — E|X]|| > 0.5x F|X]) < 2e”
* For the 100" item

Prob(|X — E[X]| > 0.5 * E[X]) < 2e~ 1200
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Repeating Reservoir Sampling

e We wan;%the fr%equency of all items to be

within 100 + 200 with high probability.

* Prob there exists at least one item out of 100
such that its frequency is not in the range is

m

< 100 *x 2™ 1200




Chernoff+Union Bound

* Random Load Balancing

— Suppose a content delivery network like YouTube
receives a million content requests per minute.
Each request needs to be served from one of the
1000 servers. How should one distribute the load
so that no server is overloaded.



Chernoff+Union Bound

* Random Load Balancing

— Suppose a content delivery network like YouTube
receives a million content requests per minute.
Each request needs to be served from one of the
1000 servers. How should one distribute the load
so that no server is overloaded.

— Assign each request to a random server.



Random Load Balancing

Let there be “n” requests and “k” servers

“w:7

Consider server “i

Define an indicator random variable )@vhlch
will be 1 if request j is assigned to server | and 0
otherwise.

Load on machinei: X = ZXJ

E\X] = ZE k [Apply the Chernoff Bound]



Random Load Balancing

* Applying the Chernoff Bound we get

n nln k
Prob| X > 3
(25,80




Random Load Balancing

* Apply Union Bound

* Prob(there exists at least one server which is

overloaded) <« 1



