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The Problem of Clustering

* Given a set of points, with a notion of distance
between points, group the points into some
number of clusters, so that members of a
cluster are “close” to each other, while
members of different clusters are “far.”



Example: Clusters




Clustering in Low Dimensional
Euclidean Space is Easy
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Modern Clustering Problem

May involve Euclidean spaces of very high dimension.

Non Euclidean space: Jaccard distance, Cosine Distance,
Hamming Distance, Edit Distance etc.

Example:

® (Cluster documents by topics based on occurrences of unusual
words

® (Cluster moviegoers by the type or types of movies they like
® (Cluster genes by their sequence similarity



A Popular Clustering Algorithm:
K Means

k=number of clusters

Given k and a set of data points in the Euclidean space
select k centers so as the the sum of squared distance
between each point and its nearest center is minimized.p

Solving this problem exactly in NP Hard

25 years ago Llyod proposed a simple local seacrh based
algorithm that is still very widely used---has polynomial
time smoothed complexity.
— However Llyod’s algorithm may get stuck at a
local optima
* KMeans ++



Llyod’s Local Search Algorithm

. Begin with k arbitrary centers, typically chosen uniformly at
random from the data points.

. Assign each point to its nearest cluster center

. Recompute the new cluster centers as the center of mass of
the points assigned to the clusters

. Repeat Steps 1-3 until the process converges.



lllustration (taken from Wiki)
Convergence to local optima
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A typical example of the k-means convergence to a local minimum. In this example, the result of k-means &

clustering (the right figure) contradicts the obvious cluster structure of the data set. The small circles are the data
points, the four ray stars are the centroids (means). The initial configuration is on the left figure. The algorithm

converges after five iterations presented on the figures, from the left to the right. The illustration was prepared with the
Mirkes Java applet.1%!



Convergence to Local Optima




Selecting centers by distance works
some time



Selecting centers by distance works
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Selecting centers by distance works

some time
\0 o
oﬁ&
0 $.0
o O
oo0g
S o °°o
008200 008.800



Selecting centers by distance works

some time
\o o
o;*éc? 2
Q
Y
i o °o°
.08:$o° OO&.SOO



Sensitive to Outlier




K-Means++

» Interpolate between the two methods:

Let D(x) be the distance between x and the nearest cluster
center. Sample x as a cluster center proportionately to

(D(x))>.

k-means++ returns clustering C which is log k-competitive.

Just the initialization in Llyod’s algorithm
changes—everything else remains the same.



Objective based clustering
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K-median

* |n Llyod’s algorithm use the next cluster
center as the median of the elements in the
cluster.



Another simple local search algorithm

e Start with arbitrary k centers: C

* Assign points to the nearest center and
compute the objective value

* |f swapping a vertex x outside of C with a
vertex v in C, decreases the objective value,

swap

The algorithm converges and gives a 5-approximation.
Better approximation bound known.



K-center

Minimizes the maximum distance

A simple greedy algorithm gives a 2-
approximation

Pick any vertex v arbitrarily and declare it as the
first center

Fori=2to k

— Select the vertex in V that is farthest from the already
chosen centers and make it the new i-th center.



Clustering with unknown k

e Say we want to cluster n objects of some kind
(documents, images, text strings)

e But we don’ t have a meaningful way to project into
Euclidean space.

* Using past data train up some classifier
f(x,y)=same/different.

 Then run fon all pairs and try to find most
consistent clustering.
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Harry Bovik

The problem

® ® Harry B.

H. Bovik
Tom X.
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The problem

Harry Bovik

Train up f(x)= same/different

Run f on all pairs

Harry B.

—— +: Same
—— -: Different
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The problem

arry B.

—— +: Same
—— -: Different

Tom X.

Totally consistent:
1. +edges inside clusters
2. - edges outside clusters
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The problem

+

Harry Bovik

Train up f(x)= same/different

Run f on all pairs

Harry B.

—— +: Same
—— -: Different
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The problem

Train up f(x)= same/different

Run f on all pairs

Tom X.

Find most consistent clustering

arry B.

—— +: Same
—— -: Different
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The problem

Train up f(x)= same/different

Run f on all pairs

Tom X.

Find most consistent clustering

Harry B.

—— +: Same
—— -: Different
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The problem

arry B.

—— +: Same
—— -: Different

Tom X.

Problem: Given a complete graph on n vertices.
Each edge labeled + or -.

Goal is to find partition of vertices as consistent as possible with
edge labels.

Max #(agreements) or Min #( disagreements)

27

There is no k : # of clusters could be anything



The Problem

Noise Removal:

There is some true clustering. However some edges
incorrect. Still want to do well.

Agnostic Learning:
No inherent clustering.
Try to find the best representation using hypothesis

Eg: Research communities via collaboration graph
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Nice features of formulation

There’ s no k. (OPT can have anywhere from 1 to
n clusters)

If a perfect solution exists, then it” s easy to find:
C(v) = N *(v). [Why?]

Easy to get agreement on % of edges. [Why?]
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Minimizing Disagreements

Goal: Get a constant factor approx.



Minimizing Disagreement

Pick a random permutation of vertices

Select v from the random order and create a
cluster with all its positive neighbors

Remove that cluster with all associated edges
Repeat

Gives a 3-approximation



O-clean Clusters

Given a clustering, vertex 0-good if few disagreements

N-(v) WithinC < 9|C]|
N*(v) Outside C <0 |C]|

v is 0-good —— +: Similar
—— -: Dissimilar
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4.

Algorithm

+

Pick vertex v. Let C(v) = N*(v)
Modify C(v)
(a) Remove 30-bad vertices from C(v).
(b) Add 70 good vertices into C(v).

Delete C(v). Repeat until done, or above always
makes empty clusters.

Output nodes left as singletons.



Lower bounding idea: bad triangles

Consider

+

We know any clustering has to disagree
with at least one of these edges.
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Lower bounding idea: bad triangles

If several such disjoint, then mistake on each one

2 Edge disjoint
Bad Triangles
(1,2,3), (3,4,5)

4 3

D, >= #{Edge disjoint bad triangles}
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