Bloom Filter & Hashing



Bloom Filter

* Checks for SET MEMBERSHIP efficiently

Is element x in the set?




Motivating Example

e Spam Filtering

» We have a set of 1 billion email addresses that we consider to

be non-spam.

» Each stream element is of the form (email address, email).

» Before accepting the email, a mail-client needs to check if this

address belongs to set S.

» Each typical email address requires 20 bytes of storage

whereas in the main memory we only have say 1 billion byte

(roughly 1 Gigabyte), or 8 billion bits.

» We cannot store all the valid email addresses in the main
memory.



Motivating Example

e Spam Filtering
— All valid emails must be delivered

— Number of spam emails delivered should be as
low as possible



Bloom Filter

1. An array of n bits, initially all 0's.

2. A collection of hash functions hy, ho, ..., hy. Each hash
function maps “key” values to n buckets, corresponding to the
n bits of the bit-array.

3. A set S of m key values

The purpose of the Bloom Filter is to allow efficient insertion of
new element into the set and answer membership queries of the
form “Is element e in set $7"



Bloom Filter

Initialization: Set the bit-array to all 0's. For every key K € S set
hi(K), h2(K), ..., he(K)

bits to 1.
Testing for membership: To test a key K’ that arrives in the

stream, check that all of
hi(K"). ha(K'), .... he(K")

are 1’s in the bit-array.
If all of them are 1, then return YES, else return NO.



Analysis of Bloom Filter

False Negative. No false negative. If a key value is in S, then the

element will surely pass through the filter, and the answer will be
YES.

False Positive. A key which is not in set S may still pass. We
need to analyze the rate of false positives.



Analysis of Bloom Filter

False Positive.

=

For simplicity, we assume that for every key K and hash
function h;, h;(K) is distributed independently and uniformly
over the range of values 1 to n.

For any 1 < |/ < n, let us calculate the prob of the /th bit to
remain 0 after inserting all the m elements. It is

km -
(1-3)"=1-)"" me 7.
Therefore, the probability that the /th bit is 1 is simply
1—e 7.
Probability of false positive=(1 — e—kTm)k



False Positive Rate

Spam Filtering Example

e We have

0.12¢ I

o
—
I

O

o

Qo
|

o

o

»
I

n=8ax10°

m = 10° |

o

Number of Hash Functions

10



Optimum Value of k

 As the number of hash functions increase,
higher is the chance of finding a O bit cell

* Also with increasing number of hash
functions, the number of cells with O bits
decreases

 Optimum value obtained by differentiation

k:1112>x<ﬁ
m



Applications of Bloom Filter

* Bloom Filter has found innumerable applications
in networking and web technology



Akamai Content Distribution Network.

“Akamai’s web servers use Bloom filters to prevent
one-hit-wonders from being stored in its disk caches.
One-hit-wonders are web objects requested by users just once,
something that Akamai found applied to nearly three-quarters of
their caching infrastructure. Using a Bloom filter to detect the
second request for a web object and caching that object only on its
second request prevents one-hit wonders from entering the disk
cache, significantly reducing disk workload and increasing disk
cache hit rates.”

Accessing objects from cache is must faster. Bloom filter allows
the detection of objects that are requested for the second time,
rather than wasting cache space for one-hit wonders.

Reference: "Bruce M. Maggs and Ramesh K. Sitaraman,
Algorithmic nuggets in content delivery, ACM SIGCOMM
Computer Communication Review (CCR), July 2015." (PDF).



Akamai Content Distribution Network.

14000
© 12000 TR
o w . v A\ o "'."
% 10000 """’" *a:f' I e
ey o : R e ® tb®
@ 3000 v'" 3 A ,.‘.“' ‘g_s."..“‘.,
A wlhe, . -
g 6000 r.. .f:\ ‘w c::‘ "N
- — *ﬁ '6 -
g 00 -3‘
filter
fal 0 turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

Figure: “Using a Bloom filter to prevent one-hit-wonders from being

stored in a web cache decreased the rate of disk writes by nearly one half,
reducing the load on the disks and potentially increasing disk

performance.”

"BloomFilterDisk” by Ramesh K. Sitaraman -
https://people.cs.umass.edu/ ramesh /Site/PUBLICATIONS.html.
Licensed under CC BY-SA 4.0 via Commons -
https://commons.wikimedia.org /wiki/File:BloomFilterDisk.png _



Google

" Google BigTable, Apache HBase and Apache Cassandra use
Bloom filters to reduce the disk lookups for non-existent rows or
columns in SSTables. Avoiding costly disk lookups considerably
increases the performance of a database query operation.”

Reference: Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay; Hsieh,
Wilson; Wallach, Deborah; Burrows, Mike; Chandra, Tushar; Fikes,
Andrew; Gruber, Robert (2006), “Bigtable: A Distributed Storage
System for Structured Data”, OSDI.



Google

“The Google Chrome web browser used to use a Bloom filter to
identify malicious URLs. Any URL was first checked against a local
Bloom filter, and only if the Bloom filter returned a positive result
was a full check of the URL performed (and the user warned, if

that too returned a positive result). "

Reference: Wikipedia.



Learn more about Bloom Filter

Video link: https://www.youtube. com/watch?v=947gWqwkhu0



Analysis of Bloom Filter

False Positive.

» For simplicity, we assume that for every key K and hash
function h;, h;(K) is distributed independently and uniformly

Analysis uses fully random hash functions—difficult to
obtain with high space and computing requirements

mm
km

l1—e n.
» Probability of false positive=(1 — e‘kTm)“



Strongly 2-wise Universal Hash Function

 Mapping set of keys U=[0,1,2,...,m-1] to range
R=[0,1,2,...,n-1]

—H={h, ,=[(ax+b) mod p] mod n}
e p>=misaprime, 1 <=a<=p-1, 0<=b <=p-1
e Easy to compute and store: O(1)
e Satisfies (almost) forall *,¥y,7,S, * # y

Probpcg(h(z) =r Ah(y) =s) = %




Strongly 3-wise Universal Hash Function

 Mapping set of keys U=[0,1,2,...,m-1] to range
R=[0,1,2,...,n-1]

—H={h, ,=[(ax*+bx+c) mod p] mod n}
e p>=m s aprime, 1<=a<=p-1, 0<=b,c<=p-1
e Easy to compute and store: O(1)
e Satisfies (almost) x,y,2,T £ Yy # 2

Probpepg(h(z) =r Ah(y) =sAh(z) =t) = %




Strongly 2-Universal

* Mapping set of keys U=[0,1,2,...,p-1] to range
R=[0,1,2,...,p-1]

—H={h, ,=(ax+b) mod p}, 0<=a,b <=p-1
* Fix x,y,x #v.
—Whatis Probpcg(h(x) =1 A h(y) = s)?
— Number of hash functions p2
— Number of solutions for “a” and “b”=1



