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We use the Chernoff bound for the Poisson distribution (Theorem 5.4) to bound this 
probability, writing the bound as 

Pr(X 2: x) :s eX-ill-X In(x/m). 

For x = m + J2m In m, we use that In(l + z) 2: z - z2/2 for z 2: 0 to show 

Pr( X > m + J 2m In m ) :s e J2m In 111- (m+J2mlnm ) In(I+J21nm/m ) 

:s eJ2mTtlm-(III+J2mlnm )(J21nm/m-lnm/m) 

= e-lnlll+J2mlnlll(lnm/m) = 0(1). 

A similar argument holds if x < m, so Pr(IX - ml > J2m Inm) = 0(1). 

We now show the second fact, that 

IPr(E I IX - ml :s J2m Inm) - Pr(E I X = m)1 = 0(1). 

Note that Pr(E I X = k) is increasing in k, since this probability corresponds to the 
probability that all bins are nonempty when k balls are thrown independently and uni

formly at random. The more balls that are thrown, the more likely all bins are nonempty. 
It follows that 

Pr(E I X = m - J2mlnm):s Pr(E IIX -ml:S J2mlnm) 

:s Pr(E I X = m + J2m Inm). 
Hence we have the bound 

IPr(E I IX - ml :s J2m Inm) - Pr(E I X = m)1 

:s Pr(E I X = m + J2m Inm) - Pr(E I X = m - J2m Inm), 

and we show the right-hand side is 0(1). This is the difference between the probability 

that all bins receive at least one ball when 111 - J 2111 In 111 balls are thrown and when 
m + J2m In m balls are thrown. This difference is equivalent to the probability of 
the following experiment: we throw 111 - J211l In m balls and there is still at least one 
empty bin, but after throwing an additional 2../2m In m balls, all bins are nonempty. 

In order for this to happen, there must be at least one empty bin after m - J2m In m 
balls; the probability that one of the next 2J2m In m balls covers this bin is at most 

(2J2m In m )/n = 0(1) by the union bound. Hence this difference is 0(1) as well. • 

5.5. Application: Hashing 

5.5.1. Chain Hashing 

The balls-and-bins-model is also useful for modeling hashing. For example, consider 

the application of a password checker, which prevents people from using common, eas
ily cracked passwords by keeping a dictionary of unacceptable passwords. When a user 

tries to set up a password, the application would like to check if the requested pass
word is part of the unacceptable set. One possible approach for a password checker 
would be to store the unacceptable passwords alphabetically and do a binary search on 
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the dictionary to check if a proposed password is unacceptable. A binary search would 
require G (log m) time for m words. 

Another possibility is to place the words into bins and then search the appropriate 
bin for the word. The words in a bin would be represented by a linked list. The place
ment of words into bins is accomplished by using a hash function. A hash function f 
from a universe U into a range [0, n - I] can be thought of as a way of placing items 
from the universe into n bins. Here the universe U would consist of possible password 
strings. The collection of bins is called a hash table. This approach to hashing is called 
chain hashing, since items that fall in the same bin are chained together in a linked list. 

Using a hash table turns the dictionary problem into a balls-and-bins problem. If our 
dictionary of unacceptable passwords consists of JJ1 words and the range of the hash 
function is [0, n - 1], then we can model the distribution of words in bins with the same 
distribution as m balls placed randomly in n bins. We are making a rather strong as
sumption by presuming that our hash function maps words into bins in a fashion that 
appears random, so that the location of each word is independent and identically dis
tributed. There is a great deal of theory behind designing hash functions that appear 
random, and we will not delve into that theory here. We simply model the problem by 
assuming that hash functions are random. In other words, we assume that (a) for each 
x E U, the probability that f(x) = j is I/n (for ° :s j :s n - 1) and that (b) the values 
of f(x) for each x are independent of each other. Notice that this does not mean that 
every evaluation of f(x) yields a different random answer! The value of fei) is fixed 
for all time; it is just equally likely to take on any value in the range. 

Let us consider the search time when there are n bins and m words. To search for an 
item, we first hash it to find the bin that it lies in and then search sequentially through the 
linked list for it. If we search for a word that is not in our dictionary, the expected num
ber of words in the bin the word hashes to is m/n. If we search for a word that is in our 
dictionary, the expected number of other words in that word's bin is (JJ1 -I )/11, so the ex
pected number of words in the bin is 1 + (m -l)/n. Ifwe choose n = III bins for our hash 
table, then the expected number of words we must search through in a bin is constant. If 
the hashing takes constant time, then the total expected time for the search is constant. 

The maximum time to search for a word, however, is proportional to the maximum 
number of words in a bin. We have shown that when n = m this maximum load is 
GOnn/ln Inn) with probability close to 1, and hence with high probability this is the 
maximum search time in such a hash table. While this is still faster than the required 
time for standard binary search, it is much slower than the average, which can be a 
drawback for many applications. 

Another drawback of chain hashing can be wasted space. If we use II bins for n 
items, several of the bins will be empty, potentially leading to wasted space. The space 
wasted can be traded off against the search time by making the average number of 
words per bin larger than 1. 

5.5.2. Hashing: Bit Strings 

If we want to save space instead of time, we can use hashing in another way. Again, 
we consider the problem of keeping a dictionary of unsuitable passwords. Assume that 
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a password is restricted to be eight ASCII characters, which requires 64 bits (8 bytes) 
to represent. Suppose we use a hash function to map each word into a 32-bit string. 
This string will serve as a short fingerprint for the word; just as a fingerprint is a suc
cinct way of identifying people, the fingerprint string is a succinct way of identifying 
a word. We keep the fingerprints in a sorted list. To check if a proposed password is 
unacceptable, we calculate its fingerprint and look for it on the list, say by a binary 
search.2 If the fingerprint is on the list, we declare the password unacceptable. 

In this case, our password checker may not give the correct answer! It is possible 
for a user to input an acceptable password, only to have it rejected because its finger
print matches the fingerprint of an unacceptable password. Hence there is some chance 
that hashing will yield afalse positive: it may falsely declare a match when there is 
not an actual match. The problem is that - unlike fingerprints for human beings - our 
fingerprints do not uniquely identify the associated word. This is the only type of mis
take this algorithm can make; it does not allow a password that is in the dictionary of 
unsuitable passwords. In the password application, allowing false positives means our 
algorithm is overly conservative, which is probably acceptable. Letting easily cracked 
passwords through, however, would probably not be acceptable. 

To place the problem in a more general context. we describe it as an approximate 

set membership problem. Suppose we have a set 5 = {SI,S2, .. "SIII} of m elements 
from a large universe U. We would like to represent the elements in such a way that we 
can quickly answer queries of the form "Is x an element of 57" We would also like the 
representation to take as little space as possible. In order to save space, we would be 
willing to allow occasional mistakes in the form of false positives. Here the unallow
able passwords correspond to our set S. 

How large should the range of the hash function used to create the fingerprints be? 
Specifically, if we are working with bits, how many bits should we use to create a fin
gerprint? Obviously, we want to choose the number of bits that gives an acceptable 
probability for a false positive match. The probability that an acceptable password has a 
fingerprint that is different from any specific unallowable password in 5 is (l-1/2h

). It 
follows that if the set 5 has size m and if we use b bits for the fingerprint, then the prob

ability of a false positive for an acceptable password is I - (1 - l/iTIi ~ I - e- Ill
/
2". 

If we want this probability of a false positive to be less than a constant c, we need 

which implies that 
m 

h> log') . 
- '-- In(l/O - c)) 

That is, we need b = Q (log~ 111) bits. On the other hand, if we use b = 210g 2 m bits, 
then the probability of a false positive falls to 

( 
1 )"1 I 1- 1- -') <-. 

171 4 111 

In this case the fingerprints will be uniformly distributed over all 32-bit strings. There are faster algorithms 

for searching over sets of number.~ \\ ith this distribution. just as Bucket sort allows faster sorting than stan

dard comparison-based sorting when the elements to he sorted are from a uniform distribution. but we will not 

concern ourselves with this point here. 
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Start with an array of Os. 

1010101010101010101010101 

Each element of 5 is hashed k times; each 
hash gives an array location to set to 1. 

XI X 1 ••• 

I 0 I 0 II~ oi61I~fID) I 0 I 

To check if y is in 5, check the k hash 
locations. If a 0 appears, y is not in S. 

v 

loloilioililill:ilirol 1 0 1 

If only 1 s appear, conclude that y is in S. 
This may yield false positives. 

\' 

I 0 I 0 111ITG frogl I 0 II I 0 I 
Figure 5.1: Example of how a Bloom tilter function~. 

In our example, if our dictionary has 2 16 = 65,536 words, then using 32 bits when 
hashing yields a false positive probability of just less than 1/65,536. 

5.5.3. Bloom Filters 

We can generalize the hashing ideas of Sections 5.5.1 and 5.5.2 to achieve more in
teresting trade-offs between the space required and the false positi\'e probability. The 
resulting data structure for the approximate set membership problem is called a Bloom 
filter. 

A Bloom filter consists of an array of Jl bits, A[O] to A[n - I]. initially all set 
to 0. A Bloom filter uses k independent random hash functions 11], .... Ilk with range 
{a, ... , n - I}. We make the usual assumption for analysis that these hash functions map 
each element in the universe to a random number uniformly over the range {O, ... . 11 -I}. 
Suppose that we use a Bloom filter to represent a set 5 = {s], S2, ... , S/I/} of JJ1 elements 
from a large universe U. For each element S E 5, the bits A [h i (s) J are set to I for I :s i :s 
k. A bit location can be set to I multiple times, but only the first change has an effect. 
To check ifan element x is in 5, we check whether all array locations A[hi(x)] for 1 :s 
i :s k are set to 1. Ifnot, then clearly x is not a member of 5, because if x were in 5 then 
all locations A[h;(x)] for 1 :s i :s k would be set to I by construction. If all A[h;(x)] 

are set to L we assume that x is in 5, although we could be wrong. We would be wrong 
if all of the positions A[h;(x)J were set to I by elements of 5 even though x is not in 
the set. Hence Bloom filters may yield false positives. Figure 5.1 shows an example. 
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The probability of a false positive for an element not in the set - the false positive 

probability - can be calculated in a straightforward fashion, given our assumption that 
the hash functions are random. After all the elements of 5 are hashed into the Bloom 
filter, the probability that a specific bit is still 0 is 

( 
1 )klll I - - :::::::; e-klll / ll

• 

n 

We let p = e-km /n
. To simplify the analysis, let us temporarily assume that a fraction 

p of the entries are still 0 after all of the elements of 5 are hashed into the Bloom filter. 
The probability of a false positive is then 

( ( 
1 )kll1)k I - I - -;; :::::::; (I - e-kll//lI)k = (I - pl. 

We let f = (1- e-km /l1 )k = (1- p)k. From now on. for convenience we use the asymp
totic approximations p and f to represent (respectively) the probability that a bit in the 
Bloom filter is 0 and the probability of a false positive. 

Suppose that we are given m and 11 and wish to optimize the number of hash func
tions k in order to minimize the false positive probability f. There are two competing 
forces: using more hash functions gives us more chances to find a O-bit for an element 
that is not a member of 5, but using fewer hash functions increases the fraction of O-bits 
in the array. The optimal number of hash functions that minimizes f as a function of 
k is easily found taking the derivative. Let g = k In(l - e-km /Il

), so that f = et; and 
minimizing the false positive probability f is equivalent to minimizing g with respect 

to k. We find 

d f? .. kill e-km /Il 

~=In(l-e-bl/I/)+- . 
dk 11 I - e-km /II 

It is easy to check that the derivative is zero when k = (In 2) . (njm) and that this 
point is a global minimum. In this case the false positive probability f is (lj2)k :::::::; 

(0.6185)I1/m. The false positive probability falls exponentially in njm, the number of 

bits used per item. In practice. of course, k must be an integer, so the best possible 
choice of k may lead to a slightly higher false positive rate. 

A Bloom filter is like a hash table. but instead of storing set items we simply use one 
bit to keep track of whether or not an item hashed to that location. If k = 1, we have 
just one hash function and the Bloom filter is equivalent to a hashing-based fingerprint 
system, where the list of the fingerprints is stored in a 0-1 bit array. Thus Bloom fil
ters can be seen as a generalization of the idea of hashing-based fingerprints. As we 
saw when using fingerprints, to get even a small constant probability of a false positive 
required Q (log m) fingerprint bits per item. In many practical applications, Q (log m) 

bits per item can be too many. Bloom filters allow a constant probability of a false pos
itive while keeping n jm, the number of bits of storage required per item, constant. For 
many applications, the small space requirements make a constant probability of error 
acceptable. For example, in the password application, we may be willing to accept 
false positive rates of I % or 2%. 
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Bloom filters are highly effective even if n = em for a small constant c, such as 
c = 8. In this case, when k = 5 or k = 6 the false positive probability is just over 0.02. 
This contrasts with the approach of hashing each element into 0) (log m) bits. Bloom 

filters require significantly fewer bits while still achieving a very good false positive 
probability. 

It is also interesting to frame the optimization another way. Consider f, the proba
bility of a false positive, as a function of p. We find 

= (1 - p) ( -In I'll/II II) 

(5.8) 

From the symmetry of this expression, it is easy to check that p = 1/2 minimizes the 
false positive probability f. Hence the optimal results are achieved when each bit of the 

Bloom filter is 0 with probability 1/2. An optimized Bloom filter looks like a random 
bit string. 

To conclude, we reconsider our assumption that the fraction of entries that are still 0 

after all of the elements of 5 are hashed into the Bloom filter is p. Each bit in the array 
can be thought of as a bin, and hashing an item is like throwing a ball. The fraction of 

entries that are still 0 after all of the elements of 5 are hashed is therefore equivalent to 

the fraction of empty bins after mk balls are thrown into II bins. Let X be the number 
of such bins when mk balls are thrown. The expected fraction of such hins is 

I ( 1 )bl1 
P = 1--

11 

The events of different bins being empty are not independent. but \\c can apply 
Corollary 5.9, along with the Chernoff bound of Eqn. (4.6), to obtain 

Pr(1 X - np'l 2: 611) :s 2evln e-IIF~nJi'. 

Actually, Corollary 5.11 applies as well, since the number of O-entries - which corre
sponds to the number of empty bins - is monotonically decreasing in the number of 

balls thrown. The bound tells us that the fraction of empty bins is close to p' (when 
n is reasonably large) and that pi is very close to p. Our assumption that the fraction 

of O-entries in the Bloom filter is p is therefore quite accurate for predicting actual 
performance. 

5.5.4. Breaking Symmetry 

As our last application of hashing, we consider how hashing provides a simple way 
to break symmetry. Suppose that n users want to utilize a resource. such as time on a 

supercomputer. They must use the resource sequentially, one at a time. Of course, each 
user wants to be scheduled as early as possible. How can we decide a permutation of 
the users quickly and fairly? 

If each user has an identifying name or number, hashing provides one possible so
lution. Hash each user's identifier into 2b bits, and then take the permutation given by 
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