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Lecture 9: Common Discrete Random Variables



Announcements

• Homework submissions – be kind to the graders if you want
them to be kind to you (if we can’t read it, we can’t give you
points for your work)
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Discrete Uniform Random Variables

• A discrete uniform random variable X with range [a, b] takes
on any integer value between (and including) a and b with the
same probability

• For example, the random variable that maps a fair six-sided
dice roll to the number that comes up is a uniform random
variable with a = 1, b = 6 and P(X = k) = 1/6 for
k = 1, ..., 6.

• The PMF of a discrete uniform random variable X is

P(X = k) =
1

b − a + 1
for k = a, . . . , b

• Used to model probabilistic situations where each of the
values a, ..., b are equally likely.
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Bernoulli Random Variables

• Suppose we have an experiment with two outcomes H and T .
H happens with probability p and T with probability 1− p,
0 < p < 1.

• We define a random variable X such that X (H) = 1 and
X (T ) = 0.

• This is called a Bernoulli random variable X that takes the
two values 0 or 1.

• Its PMF looks like

P(X = k) =

{
1− p if k = 0
p if k = 1

• You can also define X (H) = 0 and X (T ) = 1, with
P(X = 1) = p′ = 1− p
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Bernoulli Random Variables: Examples

• Whether a coin lands heads or tails.

• Whether a server is online or offline.

• Whether an email is spam or not.

• Whether a pixel in a black and white image is black or white.

• Whether a patient has a disease or not.
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Binomial Random Variable

• A binomial random variable is the combination of independent
and identically distributed Bernoulli random variables

• Suppose we flip n coins independently, where each coin has
probability p of being heads

• The set of outcomes is:

Ω = {(TTT . . .TT ), (TTT . . .TH), . . . , (HHH . . .HH)}

• Define a random variable X where for each o ∈ Ω,

X (o) = “the number of heads in outcome o”

• We’re already shown that P(X = k) =
(n
k

)
pk(1− p)n−k .
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Binomial Random Variables: Examples

• The number of heads in N coin tosses.

• The number of servers that fail in a cluster of N servers.

• The number of games a football team wins in a season of N
games (assuming i.i.d.).

• The number of True/False questions you get correct if you
guess each of N questions.
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Possible Exam Question

P(X = k) =
(n
k

)
pk(1− p)n−k is the formula for two possible

outcomes of coin toss: Head and Tail.

If now we have three different outcomes say Head, Tail and Edge
with a probability of p, q, and r , respectively (p + q + r = 1).

Suppose you toss a coin n times. What is the probability of k
heads, ` tails, m edges and in n tosses (n = k + `+ m)?

(Note that this is NOT a binomial random variable as we have
three possible outcomes.)

P(k heads, l tails, and m edges) =
n!

k! · l! ·m!
· pk · ql · rm
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Geometric Random Variables

• Suppose we flip a biased coin repeatedly until it lands heads.
Let X be the number of tosses needed for a head to come up
for the first time.

• The PMF of a geometric random variable X is

P(X = k) = (1− p)k−1 · p for k = 1, 2, 3, . . .

• Used to model the number of repeated independent trials up
to (and including) the first “successful” trial.

• Example: the number of patients we test before the first one
we find who has a given disease.
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Geometric Random Variables

• Prove the normalization of a geometric random variable.
Hint: Infinite Geometric Series (IGS):
1 + r + r2 + r3 + · · · = 1

1−r , where −1 < r < 1.

∞∑
k=1

pX (k) =
∞∑
k=1

(1−p)k−1p = p
∞∑
k=0

(1−p)k
IGS
= p· 1

1− (1− p)
= 1
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Geometric Random Variables: Examples

• Products made by a machine have a 3% defective rate.

• What is the probability that the first defect occurs in the fifth
item inspected?

P(X = k) = (1− p)k−1 · p = (1− 0.03)5−1 · 0.03 = 0.0265 . . .
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Poisson Random Variables

• A Poisson random variable X is a random variable that has
the following PMF

P(X = k) = e−λ
λk

k!
for k = 0, 1, 2, . . .

• WHAT?! Where did this come from?
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Poisson Random Variables

• A Poisson random variable X is a random variable that has
the following PMF

P(X = k) = e−λ
λk

k!
for k = 0, 1, 2, . . .

• The Poisson distribution is one of the most widely used
probability distributions.

• Built based on Taylor series: ex =
∑∞

k=0
xk

k! .

• Think about Poisson RV as a framework that provides
approximation of a real-life random variable as a function of λ.
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Poisson Random Variables

• Think about Poisson RV as a framework that provides
approximation of different PMFs as a function of λ.
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Poisson Random Variables

• It is generally used in scenarios where we are counting the
occurrences of certain events within an interval of time or
space.
I The number of typos in a book with n words.
I The number of cars that crash in a city on a given day.
I The number of phone calls arriving at a call center per minute

etc.

• λ represents the expected number of events (we will learn
more about this).
I The average number of typos in a book.
I The average number of car crash per day.
I The average number of phone calls per minute.
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Poisson Random Variables: Example

• Suppose that the number of phone calls arriving at a call
center per minute can be modeled by a discrete Poisson PMF.

• In average, the call center receives 10 calls.

• What is the probability that the center will receive 5 calls?

PX (k) = e−λ
λk

k!

PX (k) = e−10
105

5!
= 0.0378...
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Poisson Random Variables

• A Poisson PMF with λ = np is a good approximation for a
binomial PMF with very small p and very large n if k � n
I A bionomial RV X is the number of heads (k) in the n-toss

sequence, where the coin comes up a head with probability p.

• Example: n = 100 and p = 0.01 for the binomial r.v. where as
λ = np for the Poisson r.v.
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• Poisson PMF provides much simpler models and calculations:(n
k

)
pk(1− p)n−k vs. e−λ λk

k!
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Summary: Discrete Random Variables

• Uniform: For k = a, . . . , b:

P(X = k) =
1

b − a + 1

• Bernoulli: For k = 0 or 1:

P(X = k) =

{
1− p if k = 0
p if k = 1

• Binomial: For k = 0, . . . ,N

P(X = k) =

(
N

k

)
pk (1− p)N−k

• Geometric: For k = 1, 2, 3, . . ., P(X = k) = (1− p)k−1 · p
• Poisson: P(X = k) = e−λ λk

k! for k = 0, 1, 2, . . .
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Example

• Let X be the number of times you toss a dice until you see a
six. Then X is

A)Binomial B)Geometric C )Uniform D)Poisson E )Bernoulli

I The answer is Geometric.

• Suppose you toss a dice ten times and let X be the number of
times you saw a six. Then X is

A)Binomial B)Geometric C )Uniform D)Poisson E )Bernoulli

I The answer is Binomial.
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Challenging Problem

Textbook Problem 11 (reworded): A smoker carries one
matchbox in his right pocket and one in his left pocket. Each time
he wants to light a cigarette, he selects a matchbox from either
pocket with equal probability, independent of earlier selections.
The two matchboxes have initially n matches each.

Suppose that the smoker reached for a match and discovered that
the corresponding matchbox is empty. What is the PMF of the
number of remaining matches in the matchbox at the opposite
pocket?
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Challenging Problem

Solution (reworded):

1. If k matches are remaining in one pocket (say left) and 0 remaining in
the other pocket (say right), it is equivalent as if we have selected n − k
matches from the left and n matches from the right pocket, respectively.

2. Similarly to how we computed the Binomial PMF, the probability of a
single sequence that we have selected n − k from the left and n from the
right pocket is:

1

2

n−k

× 1

2

n

=
1

2

2n−k

.

3. Then, out of a total of (n − k) + n = 2n − k matches that have been
selected, we want to count the number of combinations where exactly n
of them are from the right pocket (so that it is empty), which is:(

2n − k

n

)
.

4. Thus,

P(X = k) =

(
2n − k

n

)
1

2

2n−k

,

where k = 0, 1, 2, · · · , n.
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Next Lecture: Can you make money from Roulette?
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