COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon
University of Massachusetts at Amherst

Spring 2019

Lecture 8: Discrete random variables, and Probability mass functions

Random Variable

A new concept
But you already learned it.

Review Experiments, Sample Spaces, Events

- Experiment: a process that results in exactly one of several possible outcomes, e.g., rolling a dice
- Sample space: the set of all possible outcomes of an experiment, e.g., $\Omega=\{1,2,3,4,5,6\}$
- Event: a subset of Ω, e.g., $A=$ "odd number" $=\{1,3,5\}$
- Atomic event: event consisting of a single outcome, e.g., $\{1\}$

$$
P(A)=P\left(\left\{o_{1}\right\}\right)+\ldots+P\left(\left\{o_{N}\right\}\right)
$$

Random Variable

- A random variable is a real-valued function that maps from the sample space to the real numbers,

$$
X: \Omega \rightarrow \mathbb{R}
$$

Example: Maximum of Dice Rolls

- Consider rolling two fair four sided dice.
- The outcomes $r \in \Omega$ are pairs $r=\left(r_{1}, r_{2}\right)$ where r_{1}, r_{2} both take values on the set $\{1, \ldots, 4\}$
- We could consider a function $X\left(r_{1}, r_{2}\right)=\max \left(r_{1}, r_{2}\right)$ a random variable.

Other Examples of Random Variable

- The sum of the two rolls.
- The number of ones in the two rolls.
- The second roll raised to the fifth power.
- Height of a randomly selected student in CS240.
- Temperature of the CS240 lecture hall.

More Generally. . .

- For every outcome $o \in \Omega$, a random variable defines a single real number

$$
X(o) \in \mathbb{R}
$$

- Note that it is possible to have multiple outcomes o_{1}, o_{2}, \ldots such that $X\left(o_{1}\right)=X\left(o_{2}\right)=\ldots$.

Random Variables Give An Easy Way to Specify

Events

- If we have a function $X: \Omega \rightarrow \mathbb{R}$, we can use it to construct a different event for each value of $x \in \mathbb{R}$:

$$
\{X=x\}=\{o \mid o \in \Omega \text { and } X(o)=x\}
$$

- In the dice example, the event $\{X=x\}$ is the set of outcomes $o \in \Omega$ that are mapped to the the same value x by the function X.
For example,

$$
\begin{gathered}
\{X=2\}=\{(1,2),(2,1),(2,2)\} \\
\{X=3\}=\{(1,3),(2,3),(3,3)(3,1),(3,2)\} \\
\{X=1\}=\{(1,1)\}
\end{gathered}
$$

Discrete Random Variables and Probability

- A random variable is called discrete if its input (sample space) is either finite or countably infinite.
- We can compute the probability of an event $\{X=x\}$ by decomposing it into atomic events and using the probability rule:

$$
P(X=x)=p_{X}(x)=P(\{o \mid o \in \Omega \text { and } X(o)=x\})
$$

- Probability law: A function $p_{X}(x)$ that maps event to a number between 0 and 1 that satisfies the probability axioms:

1. Nonnegativity: $p_{X}(x) \geq 0, \forall x$.
2. Normalization: $\sum_{x} p_{X}(x)=1$.

Example: Maximum of Dice Rolls

- For example, in the event of $\{X=2\}$ for the dice rolling example where $X\left(r_{1}, r_{2}\right)=\max \left(r_{1}, r_{2}\right)$

$$
\begin{aligned}
P(X=2) & =P(\{(1,2),(2,1),(2,2)\}) \\
& =P((1,2))+P((2,1))+P((2,2))=3 / 16
\end{aligned}
$$

- We can work out the probability for all possible values of x :

In general. . .

- The probability associated with the event $\{X=x\}$ for each element $x \in \mathbb{R}$ of a discrete random variable X is referred to as the probability mass function or PMF of the random variable.
- Why do you call it a mass?
- The PMF is denoted by $P(X=x)$ or $p_{X}(x)$.

- The x-axis represents all possible outcomes of the event
- The y-axis represents the associated probabilities

Discrete Random Variable Example

- Consider tossing a coin $n=3$ times.
- At each toss, the coin comes up a head with probability $p=\frac{1}{2}$, and a tail with probability $1-p=\frac{1}{2}$.
- Q: Is the number of heads in the sequence a random variable?
- A: Yes. It converts experiment outcomes (the sample space) into real-valued numbers.

Discrete Random Variable Example

- Can we mathematically define the PMF?

$$
\begin{gathered}
P_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \\
P_{X}(x)=\binom{3}{x} \frac{1}{2}^{x} \frac{1}{2}^{3-x}
\end{gathered}
$$

- How does the PMF look as a function of x.

More Discrete Random Variable Example...

Suppose you have a fair coin that shows a value 1 on one side and value -1 on the other side. Let X represent the number that you see after a single flip. What does PMF look like?

More Discrete Random Variable Example...

The discrete random variable X can take only the value 1,2 , and 3. Suppose that the PMF is defined by

$$
p_{X}(x)=\frac{x^{2}+k}{50}
$$

Then, what is the value of k ?

