COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon
University of Massachusetts at Amherst

Spring 2019

Lecture 6: Counting

Revisit: Discrete Probability Laws

- If Ω is finite and all outcomes are equally likely, then

$$
P(A)=\frac{|A|}{|\Omega|}
$$

- The calculation of probabilities often involve counting the number of outcomes in various events.
- Sometimes it's challenging to compute $|A|$ and $|\Omega|$ and they are too large work out by hand...

We are going to learn about different counting methods:

- Permutations
- k-Permutations
- Combinations
- Partitions

The Counting Principle

- Consider a sequential process with s stages. At each stage i, there are n_{i} possible results. How many outcomes does the process have?

- How many possible outcomes are possible from a sequence of s stages?

$$
n_{1} \times n_{2} \times \cdots \times n_{s}=\prod_{i=1}^{s} n_{i}
$$

Example: Phone Numbers

- Question: How many different 7 digit phone numbers are there?
- Answer: This is an $s=7$ stage experiment with $n_{i}=10$ possible events per stage. This gives 10^{7} possible phone numbers.
- Question: If your new cell number is randomly assigned, what's the probability that the last two digits match the day of your birth date?
- Answer: If the last two digits are your birth "day" (e.g. 05, 31, etc.), then there is only one choice for these two digits and 10^{5} choices for the remaining 5 digits. The probability is thus $10^{5} / 10^{7}$ or 1 in 100.

Counting Permutations

- Let S be a set of n objects.
- Consider an n-stage experiment where at each stage we choose one object without replacement.
- We pick objects until there's no more objects to pick.
- This process produces an ordering or permutation of the n objects.
- For example, if $n=3$ and $S=\{a, b, c\}$, one ordering can be bac.
- This is an n stage process. We have $s_{1}=n, s_{2}=n-1, \ldots$, $s_{n}=1$.
- By the counting principle, the number of permutations is

$$
n(n-1)(n-2) \cdots 1=n!
$$

- For permutations, order matters, i.e., $a b c \neq b a c$.

Counting k-Permutations

- Let S be a set of n objects.
- Consider a k-stage experiment where $k \leq n$. At each stage we choose one object without replacement.
- We pick only k objects.
- This process produces an ordering of the k objects, which is also called a k-permutation.
- For example, if $n=3, k=2$, and $S=\{a, b, c\}$, one possible 2-permutation is $b a$ and another is $a b$.
- This is a k-stage process where $s_{1}=n, s_{2}=n-1, \ldots$, $s_{k}=n-k+1$.
- By the counting principle, the number of permutations is

$$
n(n-1)(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

- Order also matters for k-permutations.

Example: A 100-meter Race

- There are 8 contestants racing for a 100 -meter race. The contest provides three different medals: Gold, Silver, Bronze.
- How many different medal orderings are there?
- This is a $k=3$ stage process with $n=8$ objects. Since the ordering matters, this is a k-permutation problem. The answer is thus $8!/(8-3)!=336$.

Example: A 100-meter Race

- If all medal orderings are equally likely, what's the probability that Bolt (one of the contestants) gets a medal?
- If Bolt takes the first spot, there are 7 ! $/(7-2)$! ways the other 7 runners could be assigned to the remaining spots. This is also true if Bolts takes the second or third spots.
- So, final answer is:

$$
\frac{3 \times \frac{7!}{5!}}{\frac{8!}{5!}}=\frac{3}{8}
$$

Counting Combinations

- Let S be a set of n objects. How many subsets of size k are there?
- The number of k-permutations is $n!/(n-k)$! but this over counts the number of subsets, e.g., $a b$ and $b a$ are different 2 -permutations of $\{a, b, c\}$, but the same subset $\{a, b\}$.
- Order does NOT matters for combinations.
- k ! different k-permutations belong to the same subset of k objects, so the number of " k-combinations" is

$$
\frac{\frac{n!}{(n-k)!}}{k!}=\frac{n!}{(n-k)!k!},
$$

which is denoted $\binom{n}{k}$, pronounced as " n choose k ".

- Note that $\binom{n}{0}=1$

Example: A 100-meter Race

- There are 8 contestants racing for a 100 -meter race. The contest provides three different medals: Gold, Silver, Bronze.
- How many different medalist groups are there?
- Note that our previous question was "How many different medal orderings are there?"
- This is a $k=3$ stage process with $n=8$ objects. Since the ordering does not matter, this is a combination problem.
- The answer is thus

$$
\binom{8}{3}=\frac{8!}{(8-3)!3!}=56
$$

Example: Netflix

- Question:Netflix streams 6000 movies. You want to watch 3 of them. How many different movie combinations can you choose to watch?
- Answer: Since the order in which you watch the movies does not matter, this is a combination problem. The number of possible choices is $\binom{6000}{3}$ or $35,982,002,000$.

Example: Netflix

- Question: Suppose you randomly choose 3 movies and you will be SAD if you end up watching Ghost starring Demi Moore and Patrick Swayze. What is your probability of being SAD? What is the probability that you are NOT SAD?
- Answer: You will be SAD if one of your choices is Ghost. The remaining two movies can be chosen in $\binom{5999}{2}$ or $17,991,001$ ways. Hence the probability that you are SAD is

$$
\frac{17991001}{35982002000}=0.0005
$$

On the other hand, you will be NOT SAD if all 3 of your movies are chosen from the 5999 movies. There are $\binom{5999}{3}$ or $35,964,010,999$ ways to do that. The probability you are HAPPY is

$$
\frac{35964010999}{35982002000}=0.9995
$$

One Challenging Counting Example

- How many ways are there for 3 men and 3 women to stand in a line so that no two women stand next to each other?
- First, we figure out how many ways to arrange the 3 men in a line.
- Number of permutation of 3 men is $3!=6$.
- Second, for each arrangement of men, there are 4 slots to place the 3 women so that they do not stand next to each other, which is $\binom{4}{3}$.
- W M W M W M
- MWMWMW
- WMWM MW
- WM M W M W
- Third, for each combination of women, we can then permute the arrangement of women
- Number of permutation of 3 women is $3!=6$.
- Thus, total is

$$
3!\times\binom{ 4}{3} \times 3!=144
$$

Counting Partitions

- A combination divides items into one group of k and one group of $n-k$. Thus, a combination can be viewed as a partition of the set in two.
- Consider an experiment where we divide n objects into ℓ groups with sizes $n_{1}, n_{2}, \ldots, n_{\ell}$ such that $n=\sum_{i=1}^{\ell} n_{i}$.
- How many partitions are there?
- There are $\binom{n}{n_{1}}$ ways to choose the objects for the first partition. This leaves $n-n_{1}$ objects. There are $\binom{n-n_{1}}{n_{2}}$ ways to choose objects for the second partition. There are $\binom{n-n_{1}-n_{2}-\ldots-n_{\ell-1}}{n_{\ell}}$ ways to choose the objects for the last group.

Counting Partitions

- Using the counting principle, the number of partitions is thus:

$$
\begin{aligned}
& \binom{n}{n_{1}} \cdot\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-n_{2}-\ldots-n_{\ell-1}}{n_{\ell}} \\
= & \frac{n!}{n_{1}!\left(n-n_{1}\right)!} \cdot \frac{\left(n-n_{1}\right)!}{n_{2}!\left(n-n_{1}-n_{2}\right)!} \cdots \frac{\left(n-n_{1}-n_{2}-\ldots-n_{\ell-1}\right)!}{n_{\ell}!\left(n-n_{1}-n_{2}-\ldots-n_{\ell}\right)!}
\end{aligned}
$$

- Note that $\left(n-n_{1}-n_{2}-\ldots-n_{\ell}\right)!=0!=1$.
- Canceling terms yields the final result:

$$
\frac{n!}{n_{1}!\cdots n_{\ell}!}
$$

Example: Discussion Groups

- Question: How many ways are there to split a discussion section of 12 students into 3 groups of 4 students each?
- Answer: This is a partition problem with 3 partitions of 4 objects each from a total of 12 objects. Using the partition counting formula, the answer is:

$$
\frac{12!}{4!\cdot 4!\cdot 4!}=\frac{12!}{(4!)^{3}}=34,650
$$

Summary of Counting Problems

Structure	Description	Order Matters	Formula
Permutation	Number of ways to order n ob- jects	Yes	$n!$
k-Permutation	Number of ways to form a se- quence of size k using k dif- ferent objects from a set of n objects	Yes	$\frac{n!}{(n-k)!}$
Combination	Number of ways to form a set of size k using k different ob- jects from a set of n objects	No	$\frac{n!}{k!(n-k)!}$
Partition	Number of ways to partition n objects into ℓ groups of size n_{1}, \ldots, n_{ℓ}	No	$\frac{n!}{n_{1}!\ldots n n_{\ell}!}$

