COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon
University of Massachusetts at Amherst

Spring 2019

Lecture 4: Total Probability Theorem and Bayes' Rule

Total Probability Theorem

- Let $A_{1}, A_{2}, \ldots, A_{n}$ form a partition of Ω and $P\left(A_{i}\right)>0$
- Then, for any event B, we have

$$
\begin{aligned}
P(B) & =P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)+\cdots+P\left(A_{n} \cap B\right) \\
& =P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+\cdots+P\left(A_{n}\right) P\left(B \mid A_{n}\right) .
\end{aligned}
$$

- This can be graphically explained as...

Total Probability Theorem

In a certain assembly plant, three machines, B_{1}, B_{2}, and B_{3}, make $30 \%, 45 \%$, and 25% of the products, respectively. It is known from past experience that $2 \%, 3 \%$, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

Answer is 0.0245 .

Bayes' Rule

Let $A_{1}, A_{2}, \ldots, A_{n}$ partition Ω and $P\left(A_{i}\right)>0$. For any B such that $P(B)>0$,

$$
\begin{aligned}
P\left(A_{i} \mid B\right) & =\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P(B)} \\
& =\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+\cdots+P\left(A_{n}\right) P\left(B \mid A_{n}\right)}
\end{aligned}
$$

Example: Taking the Bus

Every morning you leave your house and take the first bus that goes to the university. There's a 25% chance that the first bus that comes will be a red bus and a 75% chance it will be a blue. If you take the red bus, you get to class late 20% of the time. If you take the blue bus, you get to class late 55% of the time. What's the probability that you get to class late?

- Question: What events are specified in the problem?
- Answer: $B_{r e d}=$ "red bus is first", $B_{b l u e}=$ "blue bus is first", $L=$ "get to class late"
- Question: What probabilities are specified in the problem?
- Answer: $P\left(B_{\text {red }}\right)=0.25, \quad P\left(B_{\text {blue }}\right)=0.75, \quad P\left(L \mid B_{\text {red }}\right)=$ $0.2, \quad P\left(L \mid B_{\text {blue }}\right)=0.55$.
- Need to compute $P(L)$: Since $B_{\text {blue }}$ and $B_{\text {red }}$ partition Ω :

$$
P(L)=P\left(L \mid B_{\text {blue }}\right) P\left(B_{\text {blue }}\right)+P\left(L \mid B_{\text {red }}\right) P\left(B_{\text {red }}\right)=0.4625
$$

Example: Taking the Bus 2

Suppose the lecturer observes that you are late. What's the probability you caught the blue bus?
As before,

$$
\begin{aligned}
P\left(B_{\text {red }}\right) & =0.25, \quad P\left(B_{\text {blue }}\right)=0.75 \\
P\left(L \mid B_{\text {red }}\right) & =0.2, \quad P\left(L \mid B_{\text {blue }}\right)=0.55
\end{aligned}
$$

- Need to compute $P\left(B_{b l u e} \mid L\right)$:

$$
P\left(B_{\text {blue }} \mid L\right)=\frac{P\left(B_{\text {blue }} \cap L\right)}{P(L)}=\frac{P\left(L \mid B_{\text {blue }}\right) P\left(B_{\text {blue }}\right)}{P(L)}=0.891891 \ldots
$$

- First question uses the Total Probability Theorem and the question uses the Bayes' Rule.

Example: Medical Testing and Diagnosis

Suppose there is a deadly disease that affects 1 in 10,000 people. There is a lab test that can correctly identify positive cases 99% of the time and correctly identify negative cases 95% of the time. If you apply the test to a randomly selected individual, what is the probability that they will test positive?

- Events: $D=$ "Have the disease" and $T=$ "Test positive".
- Relationships: D and D^{C} partition Ω.
- Probabilities: $P(D)=0.0001, P(T \mid D)=0.99$, $P\left(T^{C} \mid D^{C}\right)=0.95$.
- Question: What is $P(T)$?
- Answer:

$$
\begin{aligned}
P(T) & =P(T \mid D) P(D)+P\left(T \mid D^{C}\right) P\left(D^{C}\right) \\
& =0.99 \cdot 0.0001+0.05 \cdot 0.9999=0.0501
\end{aligned}
$$

Example: Medical Testing and Diagnosis

Suppose there is a deadly disease that affects 1 in 10,000 people. There is a lab test that can correctly identify positive cases 99% of the time and correctly identify negative cases 95% of the time. If a person's test result is positive, what is the probability that he/she has the disease?

- Events: $D=$ "Have the disease" and $T=$ "Test positive".
- Relationships: D and D^{C} partition Ω.
- Probabilities: $P(D)=0.0001, P(T \mid D)=0.99$, $P\left(T^{C} \mid D^{C}\right)=0.95$.
- Question: What is $P(D \mid T)$?

$$
\begin{aligned}
P(D \mid T) & =\frac{P(T \mid D) P(D)}{P(T)} \\
& =\frac{P(T \mid D) P(D)}{P(T \mid D) P(D)+P\left(T \mid D^{C}\right) P\left(D^{C}\right)} \\
& =\frac{0.99 \cdot 0.0001}{0.99 \cdot 0.0001+0.05 \cdot 0.9999}=\frac{0.000099}{0.0501}=0.001976
\end{aligned}
$$

