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Topics

• Basic counting problems

• Probability

• Discrete random variables

• Midterm Exam #1

• Continuous random variables

• Central limit theorem

• Probabilistic reasoning

• Game theory

• Midterm Exam #2

• Markov chains

• Bayesian network

• Final Exam
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Part I Overview

• Basic counting problems
I Set theory: size of, subset, disjoint sets, partitions, power set, universal

set, operations (complement, union, intersection)
I Counting: permutations, k-permutations, combinations, partitions

• Probability
I Probability axioms
I Conditional probability (sequential model)
I Multiplication rule
I Total probability theorem
I Bayes’ rule
I Independence
I Conditional independence

• Discrete random variables
I Probability mass function (PMF)
I Common discrete RVs: uniform, Bernoulli, binomial, geometric, Poisson
I Expectation and Variance + their properties (e.g., functions of RVs)
I Multiple RVs (joint, marginal, conditional PMF; functions of two RVs,

expectation and variance)
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Part II Overview

• Continuous random variables
I Probability density function (PDF), cumulative density function (CDF),

and probability mass
I Expectation and Variance + their properties
I Common continuous RVs: uniform, exponential, (standard)

normal/Gaussian
I Multiple RVs (joint, marginal, conditional PDFs), covariance, correlation

• Limit theorems
I Markov bound
I Chebyshev bound
I Weak law of large numbers, and convergence in probability
I Strong law of large numbers
I Central limit theorem

• Game theory
I Strategies: pure, IESDS, mixed
I Nash equilibrium
I Zero-sum games
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Part III Overview

• Markov chains
I Used for problems in which the future depends on past ONLY through

present
I Consist of: state space, transition probabilities, and an initial state
I Markov property: transition probability pij must be non-negative and sum

to 1
I Transition probability matrix
I Markov chain theorem: vt = v0At

I Steady state distribution
I Classification of states: recurrent, and transient; their implication on

unique steady state
I Periodic recurrent class, and steady-state convergence theorem

• Bayesian networks
I Use known conditional independencies to factorize joint distributions using

the chain rule
I Use DAG to keep track of all conditional independence assumptions
I The factor associated with variable Xi is P(Xi |Pai )
I Three cases of conditional independence common in Bayesian networks
I Types of queries: marginal, conditional, and joint
I Estimating Bayesian networks from data
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Problems from MIT OCW:
Probabilistic Systems Analysis and Applied Probability

Tutorial 9 Problems

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/index.htm
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/unit-iii/lecture-17/MIT6_041SCF13_tut09.pdf


Problem 1 (Tutorial 9 Problem 2)

The Markov chain shown below is in state 3 immediately before the first trial.

(a) Indicate which states, if any, are recurrent, transient, and periodic.

(b) Find the probability that the process is in state 3 after n trials.

(c) Find the expected number of trials up to and including the trial on which the
process leaves state 3.

(d) Find the probability that the process never enters state 1.

(e) Find the probability that the process is in state 4 after 10 trials.

(f) Given that the process is in state 4 after 10 trials, find the probability that the
process was in state 4 after the first trial.
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Problem 1 (Tutorial 9 Problem 2)

The Markov chain shown below is in state 3 immediately before the first trial.

(a) Indicate which states, if any, are recurrent, transient, and periodic.

Recurrent: 1, 2, 4, 5, 6; Transient: 3; Periodic: 4, 5, 6.
(b) Find the probability that the process is in state 3 after n trials: 0.2n

(c) Find the expected number of trials up to and including the trial on which the
process leaves state 3.
This is a geometric random variable with parameter p = 0.5 + 0.3. Hence, the
expected number of trials up to and including the trial on which the process
leaves state 3 is E [X ] = 1/p = 5/4.

(d) Find the probability that the process never enters state 1: 3/8
(e) Find the probability that the process is in state 4 after 10 trials.

P(A) = 0.3 + 0.230.3 + 0.260.3 + 0.290.3 = 0.3024
(f) Given that the process is in state 4 after 10 trials, find the probability that the

process was in state 4 after the first trial.
0.3/P(A) = 0.992
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Problem 2 (Tutorial 9 Problem 3)

Consider the Markov chain below. Let us refer to a transition that results in a state
with a higher (respectively, lower) index as a birth (respectively, death). Calculate the
following quantities, assuming that when we start observing the chain, it is already in
steady-state.

(a) For each state i , the probability that the current state is i .

(b) The probability that the first transition we observe is a birth.

(c) The probability that the first change of state we observe is a birth.

(d) The conditional probability that the process was in state 2 before the first
transition that we observe, given that this transition was a birth.

(e) The conditional probability that the process was in state 2 before the first
change of state that we observe, given that this change of state was a birth.
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Consider the Markov chain below. Let us refer to a transition that results in a state
with a higher (respectively, lower) index as a birth (respectively, death). Calculate the
following quantities, assuming that when we start observing the chain, it is already in
steady-state.

(a) For each state i , the probability that the current state is i .

The steady state equations take the form 0.6v [1] = 0.3v [2], 0.2v [2] = 0.2v [3].
These can be solved, together with the normalization equation, to yield
v [1] = 1/5, v [2] = v [3] = 2/5.

(b) The probability that the first transition we observe is a birth.

0.6v [1] + 0.2v [2] = 0.6
1

5
+ 0.2

2

5
=

1

5
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following quantities, assuming that when we start observing the chain, it is already in
steady-state.

(c) The probability that the first change of state we observe is a birth.

If the state is 1, which happens with probability 1/5, the first change of state is
certain to be a birth. If the state is 2, which happens with probability 2/5, the
probability that the first change of state is a birth is equal to
0.2/(0.3 + 0.2) = 2/5. Finally, if the state is 3, the probability that the first
change of state is a birth is equal to 0. Thus, the probability that the first
change of state that we observe is a birth is equal to

1
1

5
+

2

5
·

2

5
=

9

25
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Lectures’ summaries



Markov Chains

0 1 2 3

1/2 1/2

1/2
1/6

1/21/3

1/31/2

1/6

1/2



Markov Chain

• Markov chains are used for problems in which the future
depends on past ONLY through present!

• The condition of the future is summarized by a state, which
changes over time according to given probabilities.

• Example: whether you would understand the content of the
next class only depends on whether you understand the
concept in today’s class.
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Discrete Markov Chain

• For discrete-time Markov chains, the state changes at certain
discrete time instances, indexed by an integer variable t.

• A discrete Markov chain defines a series of random variables
Xt , e.g., {X0,X1,X2, . . .}.
• A Markov Chain consists:

I State space: a set of states in which the chain can be
described at time t:

S = {s1, . . . , sk}

I Transition probabilities that describe the probability of
transitioning from a state at t − 1 to another state at t:

PXt = sj |Xt−1 = si = pij for all 1 ≤ i , j ≤ k

I An initial state X0, in which the chain is initiated.
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Markov Property

• The key assumption is that the transition probabilities (pij) for
the state at time t + 1 (state j) only depends on the state at
time t (state i).
I The value of Xt+1 only depends on the value of Xt .

• Mathematically, the Markov property defines that

P(Xt+1 = j |Xt = i ,Xt−1 = xt−1, · · · ,X0 = x0)

= P(Xt+1 = j |Xt = i)

= pij

• The transition probability pij must be non-negative and sum
to 1:

k∑
j=1

pij = 1, for all i .
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Transition Probability Graph

A Markov chain can be described using transition probability
graph, whose nodes are the states and whose arrows are the
possible transitions (with probabilities).

0 1 2 3

1/2 1/2

1/2
1/6

1/21/3

1/31/2

1/6

1/2

Weights on arrows out of each state i sum to one:
∑
j

pij = 1
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What if the current state is uncertain?

• What if we don’t know Xt−1, but know P(Xt−1 = i) for each
i , what’s P(Xt = j)?
• Then, by the Law of Total Probability:

P(Xt = j) =
∑
i

P(Xt = j ,Xt−1 = i)

=
∑
i

P(Xt = j |Xt−1 = i)P(Xt−1 = i)

=
∑
i

pijP(Xt−1 = i)

• Example: If there’s a 1/3 probability we’re in state 1 and a
2/3 probability we’re in state 3, what’s the probability we’re in
state 2 after one step.

0 1 2 3

1/2 1/2

1/2
1/6

1/21/3

1/31/2

1/6

1/2

Answer: 4/9.
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Markov Chain Theorem

Theorem
We define the distribution of Xt as

vt = 〈vt [1], vt [2], · · · , vt [k]〉
= 〈PXt = 1,PXt = 2, . . . ,PXt = k〉 .

where

vt [j] = PXt = j

=
∑
i

PXt = j |Xt−1 = iPXt−1 = i

=
∑
i

pijvt−1[i ].

Thus,

vt =

〈∑
i

pi1vt−1[i ],
∑
i

pi2vt−1[i ], · · · ,
∑
i

pikvt−1[i ]

〉
.
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Markov Chain Theorem

This implies that if we know the distribution at t = 0 (i.e., v0), then we can
compute any vt where t > 0:

v1 =

〈∑
i

pi1v0[i ],
∑
i

pi2v0[i ], · · · ,
∑
i

pikv0[i ]

〉
.

v2 =

〈∑
i

pi1v1[i ],
∑
i

pi2v1[i ], · · · ,
∑
i

pikv1[i ]

〉
.

v3 =

〈∑
i

pi1v2[i ],
∑
i

pi2v2[i ], · · · ,
∑
i

pikv2[i ]

〉
.

...

vt =

〈∑
i

pi1vt−1[i ],
∑
i

pi2vt−1[i ], · · · ,
∑
i

pikvt−1[i ]

〉
.
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Markov Chain Theorem

• This theorem can be effectively represented using matrices, but it
requires knowledge about linear algebra.

• To give you a short overview, a Markov chain model can be encoded
in a transition probability matrix. Make sure that you remember
the following notation:

A =


p1,1 p1,2 · · · p1,k

p2,1 p2,2 · · · p2,k

...
...

. . .
...

pk,1 pk,2 · · · pk,k


• Markov Chain Theorem: Given v0, we can compute v1 = v0A, and

vt = vt−1A = vt−2AA = vt−3AAA = . . . = v0A
t
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Analyzing Markov Chains via Matrices

• Define Transition probability matrix:

A =


p0,0 p0,1 p0,2 p0,3

p1,0 p1,1 p1,2 p1,3

p2,0 p2,1 p2,2 p2,3

p3,0 p3,1 p3,2 p3,3

 =


1/2 1/2 0 0
1/6 1/2 1/3 0

0 1/3 1/2 1/6
0 0 1/2 1/2



0 1 2 3

1/2 1/2

1/2
1/6

1/21/3

1/31/2

1/6

1/2

25 / 59



Simulation of the queue if there is initially one
person

Given

vt =

〈∑
i

pi1vt−1[i ],
∑
i

pi2vt−1[i ], · · · ,
∑
i

pikvt−1[i ]

〉
.

v0 = 〈0.000, 1.000, 0.000, 0.000〉
v1 = 〈0.167, 0.500, 0.333, 0.000〉
v2 = 〈0.167, 0.444, 0.333, 0.056〉
v3 = 〈0.158, 0.416, 0.342, 0.084〉
v4 = 〈0.148, 0.401, 0.352, 0.099〉
v5 = 〈0.142, 0.391, 0.359, 0.109〉
v6 = 〈0.136, 0.386, 0.364, 0.114〉
v7 = 〈0.133, 0.382, 0.368, 0.118〉
v8 = 〈0.130, 0.380, 0.370, 0.120〉

...
...

...

v∞ = 〈0.125, 0.375, 0.375, 0.125〉
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Steady State Distribution

Do all Markov chains have the property that eventually the distribution settles to the
“same steady” state regardless of the initial state?

Definition
We have

v = lim
t→∞

vt

〈v [1], v [2], . . . , v [k]〉 = lim
t→∞

〈vt [1], vt [2], . . . , vt [k]〉

If we have

v [j] =
k∑

i=1

pijv [i ] for j = 1, · · · , k

and
k∑

j=1

v [j] = 1

Then, we say v is a steady state distribution for the Markov Chain.
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Queuing Example

For the queuing example, we had

P =


1
2

1
2

0 0
1
6

1
2

1
3

0

0 1
3

1
2

1
6

0 0 1
2

1
2


if v = (v [1], v [2], v [3], v [4]) then

v [1] =
v [1]

2
+

v [2]

6

v [2] =
v [1]

2
+

v [2]

2
+

v [3]

3

v [3] =
v [2]

3
+

v [3]

2
+

v [4]

2

v [4] =
v [3]

6
+

v [4]

2
Furthermore,

v [1] + v [2] + v [3] + v [4] = 1

Solving these gives us

v = (0.125, 0.375, 0.375, 0.125)
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Classification of States

• We say that a state i is recurrent if for every j that is
accessible from i , i is also accessible from j .
I Denoting A(i) as a set of states that are accessible from i , for

all j that belong to A(i) we have that i belongs to A(j).
• If i is a recurrent state, the set of states A(i) that are

accessible from i form a recurrent class.
I States in A(i) are all accessible from each other, and no state

outside A(i) is accessible from them.

• A state is called transient if it is not recurrent.
• A Markov chain with multiple recurrent classes does not

converges to a unique steady state.
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Recurrent States

• Question: Which of the following Markov chains have a
single recurrent class?

• Answer: Right two chains
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Periodic Recurrent Class

Definition

• Consider a recurrent class.

• Let us group all the states into d disjoint groups of states
S1, · · · ,Sd ; a group has to contain at least one state.

• Such a recurrent class is called periodic if there exists at least
one group (of states) in the chain that is visited with a period
of T . That is, group(s) are visited at time
{T , 2T , 3T , 4T , . . .} steps for T ∈ {2, 3, . . .}.
• If a recurrent class is not periodic, we call the class aperiodic.
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Periodic/Aperiodic Class

• Question: Which of the following Markov chains contain a
single periodic recurrent class?

• Answer: Only the one to the left (with period of 2).
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Steady-State Convergence Theorem

Theorem
Consider a Markov chain with a single, aperiodic recurrent class.
Then, the states in such a Markov chain have steady-state
distribution.

• Example: Consider a Markov chain C with 2 states and
transition matrix

A =

(
1− a a
b 1− b

)
for some 0 < a, b < 1
• Does C have a single recurrent class? Yes.
• Is C periodic? No, as long as 0 < a, b < 1
• Then, what is its steady state distribution v?
• Let v = (c , 1− c) be a steady state distribution.
• Solving v [j ] =

∑m
k=1 v [k]pkj for gives:

v∗ =

(
b

a + b
,

a

a + b

)
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Bayesian Networks



Chain Rule – Review

• Simplest form of the chain rule is

P(A,B) = P(B|A)P(A) = P(A|B)P(B)

• Chain rule for 3 variables

P(A,B,C ) = P(C |A,B)P(A|B)P(B)

= P(C |A,B)P(B|A)P(A)

= P(B|A,C )P(A|C )P(C )

= P(B|A,C )P(C |A)P(A)

= P(A|B,C )P(B|C )P(C )

= P(A|B,C )P(C |B)P(B)

• This can be generalized as

P(Xn, · · · ,X1) = P(Xn|Xn−1, · · · ,X1)P(Xn−1, · · · ,X1)
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Joint and Marginal Probabilities – Review

• For two discrete random variables X and Y , the joint PMF P(X ,Y )
was defined as

P(X = x ,Y = y) = P(X = x and Y = y) = P({X = x}∩{Y = y})

• Marginal probabilities could be computed as

P(X = x) =
∑
y

P(X = x ,Y = y)

P(Y = y) =
∑
x

P(X = x ,Y = y)

• For multiple discrete random variables X1, · · ·Xn whose joint PMF is
denoted as P(X1, · · ·Xn), marginal probabilities could be computed
as

P(X1 = x1) =
∑
x2

· · ·
∑
xn

P(X1 = x1,X2 = x2, · · · ,Xn = xn)
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Joint PMFs for Many Random Variables

• Before we can think about inference or estimation problems
with many random variables, we need to think about the
implications of representing joint PMFs over many random
variables.

• Why joint PMFs of all random variables?
I It allows us to compute (marginal or conditional) probabilities

of any event that we are interested in.
I For example, what is the probability that a patient has cancer

given test results?

P(Cancer |Test1, · · · ,Testn) =
P(Cancer ,Test1, · · · ,Testn)

P(Test1, · · · ,Testn)
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The Curse of Dimensionality

• Suppose we have an experiment where we obtain the values of
d random variables X1, ...,Xd , where each variable has binary
outcomes (for simplicity).
• Question: How many numbers does it take to write down a

joint distribution for them?
• Answer: We need to define a probability for each d-bit

sequence:

P(X1 = 0,X2 = 0, ...,Xd = 0)

P(X1 = 1,X2 = 0, ...,Xd = 0)

...

P(X1 = 1,X2 = 1, ...,Xd = 1)

• The number of d-bit sequences is 2d . Because we know that
the probabilities have to add up to 1, we need to write down
2d − 1 numbers to specify the full joint PMF on d binary
variables.
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How Fast is Exponential Growth?

• 2d − 1 grows exponentially as d increases linearly:

d 2d − 1

1 1

10 1023

100 1,267,650,600,228,229,401,496,703,205,375
...

...

• Storing the full joint PMF for 100 binary variables would take
about 1030 real numbers or about 1018 terabytes of storage!

• Joint PMFs grow in size so rapidly, we have no hope
whatsoever of storing them explicitly for problems with more
than about 30 (binary) random variables.
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Factorizing Joint Distributions

• To address this, we start by factorizing the joint distribution,
i.e., re-writing the joint distribution as a product of
conditional PMFs over single variables (called factors).

• If we know some conditional independency between the
variables, we can save some space.
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Conditional Independence: Simplification Example

• Suppose we instead only assume that:
I P(X2 = a2|X1 = a1,X3 = a3) = P(X2 = a2|X1 = a1) for all

a1, a2, a3.

• This gives the “conditional independence model”: X2 is
conditionally independent of X3 given X1

P(X1 = a1,X2 = a2,X3 = a3)

= P(X1 = a1)P(X3 = a3|X1 = a1)P(X2 = a2|X1 = a1,X3 = a3)

= P(X1 = a1)P(X3 = a3|X1 = a1)P(X2 = a2|X1 = a1)

• How many numbers do we need to store for three binary
random variables in this case?
1 + 2 + 2 = 5 (as opposed to 23 − 1 = 7 if we encoded the
full joint)
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Bayesian Networks

• Keeping track of all the conditional independence assumptions
gets tedious when there are a lot of variables.

• To get around this problem, we use “Bayesian Networks” to
express the conditional independence structure of these
models.

• A Bayesian network uses conditional independence
assumptions to more compactly represent a joint PMF of
many random variables.
• We use a Directed Acyclic Graph (DAG) to encode

conditional independence assumptions.
I Nodes Xi in the graph G represent random variables.
I A directed edge Xj → Xi means Xi directly depends on Xj (not

causation!).
I We also define that Xj is a “parent” of Xi .
I The set of variables that are parents of Xi is denoted Pai .
I Xi is independent of all its nondescendants given Pai .
I The factor associated with variable Xi is P(Xi |Pai ).
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Bayesian Networks vs. Markov Chains

• In Transition Probability Graphs of Markov Chains, nodes
represent all possible states, and arrows represents the
probability of transition from one state to another (with
numbers written on it).
• In Bayesian Networks, nodes represent all possible random

variables, and arrows represents dependencies between the
random variables (no numbers associated with it).

0 1 2 3

1/2 1/2

1/2
1/6

1/21/3

1/31/2

1/6

1/2
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The Bayesian Network Theorem

• Definition: A joint PMF P(X1, ...,Xd) is a Bayesian network
with respect to a directed acyclic graph G with parent sets
{Pa1, ...,Pad} if and only if:

P(X1, ...,Xd) =
d∏

i=1

P(Xi |Pai )

• In other words, to be a valid Bayesian network for a given
graph G , the joint PMF must factorize according to G .
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3 Cases of Conditional Independence to Remember

X1 X2X3

Pa1 = {},Pa3 = {X1},Pa2 = {X3}

P(X1,X2,X3) = P(X1)P(X3|X1)P(X2|X3)
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3 Cases of Conditional Independence to Remember

X1

X2 X3

Pa1 = {},Pa3 = {X1},Pa2 = {X1}
P(X1,X2,X3) = P(X1)P(X3|X1)P(X2|X1) (1)

• Note that X2 and X3 are conditionally independent given X1:

P(X2,X3|X1) = P(X2|X1) · P(X3|X1)

Proof: divide both sides in (1) by P(X1)
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3 Cases of Conditional Independence to Remember

X1

X2

X3

Pa1 = {},Pa3 = {},Pa2 = {X1,X3}
P(X1,X2,X3) = P(X1)P(X3)P(X2|X1,X3) (2)

• Note that X1 is not independent of X3 given X2:

P(X1,X3|X2) 6= P(X1|X2) · P(X3|X2)

Proof: divide both sides in (2) by P(X2):

P(X1,X3|X2) =
P(X1)P(X3)P(X2|X1,X3)

P(X2)
6= P(X1|X2)·P(X3|X2)
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If All Nodes Are Independent

X1 X2 X3

Pa1 = {},Pa3 = {},Pa2 = {}

P(X1,X2,X3) = P(X1)P(X3)P(X2)

48 / 59



The Alarm Network: Random Variable

• You live in quiet neighborhood in the suburbs of LA. There
are two reasons the alarm system in your house will go off:
your house is broken into or there is an earthquake. If your
alarm goes off you might get a call from the police
department. You might also get a call from your neighbor.

P(B,E ,A,PD,N) = P(B)P(E )P(A|B,E )P(PD|A)P(N|A) 49 / 59



The Alarm Network: Marginal Query

• Question: What is the probability that there was a break-in,
but no earthquake, the police call, but your neighbor does not
call?

P(B = 1,E = 0,PD = 1,N = 0)

=
∑

A={0,1}

P(B = 1,E = 0,PD = 1,N = 0,A)

= P(B = 1,E = 0,PD = 1,N = 0,A = 0)

+P(B = 1,E = 0,PD = 1,N = 0,A = 1)

= P(B = 1)P(E = 0)P(A = 1|B = 1,E = 0)P(PD = 1|A = 1)P(N = 0|A = 1)

+P(B = 1)P(E = 0)P(A = 0|B = 1,E = 0)P(PD = 1|A = 0)P(N = 0|A = 0)

= 0.001 · (1− 0.002) · 0.94 · 0.9 · (1− 0.75)

+0.001 · (1− 0.002) · (1− 0.94) · 0.005 · (1− 0.1) = 0.00021 . . .
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The Alarm Network: Marginal Query

• Question: What is the probability that the alarm will be on?

P(A = 1)

=
∑
B

∑
E

∑
PD

∑
N

P(A = 1,B,E ,PD,N)

=
∑
B

∑
E

∑
PD

∑
N

P(B)P(E)P(A = 1|B,E)P(PD|A = 1)P(N|A = 1)

= P(B = 0)P(E = 0)P(A = 1|B,E = 0)P(PD = 0|A = 1)P(N = 0|A = 1)

+P(B = 0)P(E = 0)P(A = 1|B,E = 0)P(PD = 0|A = 1)P(N = 1|A = 1)

· · ·
+P(B = 1)P(E = 1)P(A = 1|B,E = 1)P(PD = 1|A = 1)P(N = 1|A = 1)
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The Alarm Network: Marginal Query

• We can compute the above using a simple algorithm:

Z = 0;
for B = 0 to 1 do

for E = 0 to 1 do
for PD = 0 to 1 do

for N = 0 to 1 do
Z = Z+
P(B)P(E )P(A = 1|B,E )P(PD|A = 1)P(N|A = 1);

end

end

end

end

• What would be the potential problem with this?
I Computational complexity explodes as # of variables increases
I The multiplication of small number approaches to 0 as # of

variables increases
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The Alarm Network: Marginal Query

• We can optimize the computation as the following

P(A = 1)

=
∑
B

∑
E

∑
PD

∑
N

P(B)P(E)P(A = 1|B,E)P(PD|A = 1)P(N|A = 1)

=
∑
B

∑
E

P(B)P(E)P(A = 1|B,E)
∑
PD

P(PD|A = 1)
∑
N

P(N|A = 1)

=
∑
B

∑
E

P(B)P(E)P(A = 1|B,E)

53 / 59



The Alarm Network: Conditional Query

• Question: What is the probability that the alarm went off given that there was
a break-in, but no earthquake, the police call, but your neighbor does not call?

P(A = 1|B = 1,E = 0,PD = 1,N = 0)

=
P(B = 1,E = 0,A = 1,PD = 1,N = 0)

P(B = 1,E = 0,PD = 1,N = 0)

=
P(B = 1,E = 0,A = 1,PD = 1,N = 0)∑1
a=0 P(B = 1,E = 0,A = a,PD = 1,N = 0)

=
P(B = 1)P(E = 0)P(A = 1|B = 1,E = 0)P(PD = 1|A = 1)P(N = 0|A = 1)∑1
a=0 P(B = 1)P(E = 0)P(A = a|B = 1,E = 0)P(PD = 1|A = a)P(N = 0|A = a)
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Answering Probabilistic Queries

• Joint Query: To compute the probability of an assignment to
all of the variables we simply express the joint probability as a
product over the individual factors. We then look up the
correct entries in the factor tables and multiply them together.

• Marginal Query: To compute the probability of an observed
subset of the variables in the Bayesian network, we sum the
joint probability of all the variables over the possible
configurations of the unobserved variables.

• Conditional Query: To compute the probability of one
subset of the variables given another subset, we first apply the
conditional probability formula and then compute the ratio of
the resulting marginal probabilities.
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Estimating Bayesian Networks from Data

• Just as with simpler models like the biased coin, we can
estimate the unknown model parameters from data.

• If we have data consisting of n observations of all of the
variables in the network, we can easily estimate the entries of
each conditional probability table.
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Estimating Bayesian Networks: Counting

• No Parents: For a variable X with no parents, the estimate
of P(X = x) is just the number of times that the variable X
takes the value x in the data, divided by the total number of
data cases n.

• Some Parents: For a variable X with parents Y1, ...,Yp, the
estimate of P(X = x |Y1 = y1, ...,Yp = yp) is just the number
of times that the variable X takes the value x when the
parent variables Y1, ...,Yp take the values y1, ..., yp, divided by
the total number of times that the parent variables take the
values y1, ..., yp.
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Computing the Factor Tables from Observations

• Suppose we have a sample of data as shown below. Each row i is a joint
configuration of all of the random variables in the network.

E B A PD N

1 0 1 1 1
0 0 0 0 1
0 0 1 1 0
0 1 1 1 0
0 0 0 0 0

• In the alarm network, consider the factor P(E). We need to estimate P(E = 0)
and P(E = 1).

• Given our data sample, we get the answers P(E = 0) = 4/5 and
P(E = 1) = 1/5.
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Computing the Factor Tables from Observations

• In the alarm network, consider the factor P(N|A). We need to
estimate P(N = 0|A = 0),P(N = 1|A = 0), P(N = 0|A = 1),
P(N = 1|A = 1). How can we do this?

E B A PD N

1 0 1 1 1

0 0 0 0 1

0 0 1 1 0

0 1 1 1 0

0 0 0 0 0

• P(N = 0|A = 0) = 1
2 ,P(N = 1|A = 0) = 1

2

• P(N = 0|A = 1) = 2
3 ,P(N = 1|A = 1) = 1

3
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