COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan
University of Massachusetts at Amherst

Spring 2019, Section 01

Lecture 31: Review for Final Exam

Topics

- Basic counting problems
- Probability
- Discrete random variables
- Midterm Exam \#1
- Continuous random variables
- Central limit theorem
- Probabilistic reasoning
- Game theory
- Midterm Exam \#2
- Markov chains
- Bayesian network
- Final Exam

Overview

- Basic counting problems
- Set theory: size of, subset, disjoint sets, partitions, power set, universal set, operations (complement, union, intersection)
- Counting: permutations, k-permutations, combinations, partitions
- Probability
- Probability axioms
- Conditional probability (sequential model)
- Multiplication rule
- Total probability theorem
- Bayes' rule
- Independence
- Conditional independence
- Discrete random variables
- Probability mass function (PMF)
- Common discrete RVs: uniform, Bernoulli, binomial, geometric, Poisson
- Expectation and Variance + their properties (e.g., functions of RVs)
- Multiple RVs (joint, marginal, conditional PMF; functions of two RVs, expectation and variance)

Problems from MIT OCW:
 Probabilistic Systems Analysis and Applied Probability Quiz 1 Spring 2009

Problem 1

Which of the following statements is NOT true?
(a) If $A \subset B$, then $P(A) \leq P(B)$.
(b) If $P(B)>0$, then $P(A \mid B) \geq P(A)$.
(c) $P(A \cap B) \geq P(A)+P(B)-1$.
(d) $P\left(A \cap B^{c}\right)=P(A \cup B)-P(B)$.

Problem 1

Which of the following statements is NOT true?
(a) If $A \subset B$, then $P(A) \leq P(B)$.
(b) If $P(B)>0$, then $P(A \mid B) \geq P(A)$.
(c) $P(A \cap B) \geq P(A)+P(B)-1$.
(d) $P\left(A \cap B^{c}\right)=P(A \cup B)-P(B)$.

Solution: (b)

A counter example: if we have two events A, B such that $P(B)>0$ and $P(A)>0$, but $A \cap B=\emptyset$, then $P(A \mid B)=0$, but $P(A)>P(A \mid B)$. It's easy to come up with examples like this: for example, take any sample space with event A such that $P(A)>0$, and $P\left(A^{c}>0\right)$, it follows that $P\left(A \mid A^{c}\right)=0$, but $P(A)>0$.

Problem 2

We throw n identical balls into m urns at random, where each urn is equally likely and each throw is independent of any other throw. What is the probability that the i-th urn is empty?
(a) $\left(1-\frac{1}{m}\right)^{n}$
(b) $\left(1-\frac{1}{n}\right)^{m}$
(c) $\binom{m}{n}\left(1-\frac{1}{n}\right)^{m}$
(d) $\binom{n}{m}\left(\frac{1}{m}\right)^{n}$

Problem 2

We throw n identical balls into m urns at random, where each urn is equally likely and each throw is independent of any other throw. What is the probability that the i-th urn is empty?
(a) $\left(1-\frac{1}{m}\right)^{n}$
(b) $\left(1-\frac{1}{n}\right)^{m}$
(c) $\binom{m}{n}\left(1-\frac{1}{n}\right)^{m}$
(d) $\binom{n}{m}\left(\frac{1}{m}\right)^{n}$

Solution: (a)

The probability of the j th ball going into the i th urn is $1 / m$. Hence, the probability of the j th ball not going into the i th urn is $(1-1 / m)$. Since all throws are independent from one another, we can multiply these probabilities: the probability of all n balls not going into the i th urn, i.e. it is empty, is $\left(1-\frac{1}{m}\right)^{n}$.

Problem 3

We toss two fair coins simultaneously and independently. If the outcomes of the two coins are the same, we win; otherwise, we lose. Let A be the event that the first coin comes up heads, B be the event that the second coin comes up heads, and C be the event that we win. Which of the following statements is false?
(a) Events A and B are independent.
(b) Events A and C are independent.
(c) Events A and B are not conditionally independent given C.
(d) The probability of winning is $1 / 2$.

Problem 3

We toss two fair coins simultaneously and independently. If the outcomes of the two coins are the same, we win; otherwise, we lose. Let A be the event that the first coin comes up heads, B be the event that the second coin comes up heads, and C be the event that we win. Which of the following statements is false?
(a) Events A and B are independent.
(b) Events A and C are independent.
(c) Events A and B are not conditionally independent given C.
(d) The probability of winning is $1 / 2$.

Solution: (b)

The sample space in this case is $\Omega=\{(H, H),(H, T),(T, H),(T, T)\}$. The probability law is a uniform distribution over this space. We have $A=\{(H, H),(H, T)\}, B=\{(H, H),(T, H)\}$, and $C=\{(H, H),(T, T)\}$. By the discrete uniform law, $P(A)=P(B)=P(C)=1 / 2$. We also have $P(A \cap C)=1 / 4$, hence $P(A \cap C)=P(A) P(C)$, and the two events are independent. Intuitively, knowing that you won adds no information about whether your coin turned up heads or not: stating this formally, we have $P(A \mid C)=P(A)$.

Problem 4

For a biased coin, the probability of "heads" is $1 / 3$. Let h be the number of heads in five independent coin tosses. What is the probability
P (first toss is a head $h=1$ or $h=5$)?
(a) $\frac{\frac{1}{3}\left(\frac{2}{3}\right)^{4}}{5 \frac{1}{3}\left(\frac{2}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}}$
(b) $\frac{\frac{1}{3}\left(\frac{2}{3}\right)^{4}}{\frac{1}{3}\left(\frac{2}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}}$
(c) $\frac{\frac{1}{3}\left(\frac{2}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}}{5 \frac{1}{3}\left(\frac{2}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}}$
(d) $\frac{1}{5}$

Problem 4

For a biased coin, the probability of "heads" is $1 / 3$. Let h be the number of heads in five independent coin tosses. What is the probability $P($ first toss is a head $\mid h=1$ or $h=5)$?
(a) $\frac{\frac{1}{3}\left(\frac{2}{3}\right)^{4}}{5 \frac{1}{3}\left(\frac{2}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}}$
(b) $\frac{\frac{1}{3}\left(\frac{2}{3}\right)^{4}}{\frac{1}{3}\left(\frac{2}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}}$
(c) $\frac{\frac{1}{3}\left(\frac{2}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}}{5 \frac{1}{3}\left(\frac{2}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}}$
(d) $\frac{1}{5}$

Solution: (c)
Let A be the event that the first toss is a head.

$$
\begin{aligned}
P(A \mid\{H=1\} \text { or }\{H=5\}) & =\frac{P(A \cap(\{H=1\} \cup\{H=5\}))}{P(\{H=1\} \cup\{H=5\})} \\
& =\frac{P((A \cap\{H=1\}) \cup(A \cap\{H=5\}))}{P(\{H=1\} \cup\{H=5\})} \\
& =\frac{P(\{H=1\})+P(A \cap\{H=5\})}{P(\{H=1\})+P(\{H=5\})}=\frac{(1 / 3)^{5}+(1 / 3)(2 / 3)^{4}}{\binom{5}{1}(1 / 3)(2 / 3)^{4}+\binom{5}{5}(1 / 3)^{5}}
\end{aligned}
$$

Problem 5

A well-shuffled deck of 52 cards is dealt evenly to two players (26 cards each). What is the probability that player 1 gets all the aces?
(a) $\frac{\binom{48}{22}}{\binom{52}{26}}$
(b) $\frac{4\binom{48}{22}}{\binom{52}{26}}$
(c) $\frac{48!}{22!} \frac{52!}{26!}$
(d) $\frac{4!\binom{42}{22}}{\binom{52}{26}}$

Problem 5

A well-shuffled deck of 52 cards is dealt evenly to two players (26 cards each). What is the probability that player 1 gets all the aces?
(a) $\frac{\binom{48}{22}}{\binom{52}{26}}$
(b) $\frac{4\binom{48}{22}}{\binom{52}{26}}$
(c) $\frac{48!}{22!} \frac{52!}{26!}$
(d) $\frac{4!\binom{48}{22}}{\binom{52}{26}}$

Solution: (a)
Let A be the event that player 1 gets all aces. By the discrete uniform law,

$$
P(A)=|A| /|\Omega|
$$

$|\Omega|=\binom{52}{16}$ is the number of hands (26 cards from 52) player 1 can have. Additionally, once we have given player 1 all aces, then they must be given an additional 22 cards from the remaining 48 cards in the deck. Hence,

$$
P(A)=\binom{48}{22} /\binom{52}{26}
$$

Problem 6

Suppose X, Y and Z are three independent discrete random variables. Then, X and $Y+Z$ are
(a) always independent
(b) sometimes independent
(c) never independent

Problem 6

Suppose X, Y and Z are three independent discrete random variables. Then, X and $Y+Z$ are
(a) always independent
(b) sometimes independent
(c) never independent

Solution: (a)
Since X is independent of Y and Z, X is independent of $g(Y, Z)$ for any function $g(Y, Z)$, including $g(Y, Z)=Y+Z$.

Problem 7

To obtain a driving license, Mina needs to pass her driving test. Every time Mina takes a driving test, with probability $1 / 2$, she will clear the test independent of her past. Mina failed her first test. Given this, let Y be the additional number of tests Mina takes before obtaining a license. Then,
(a) $E[Y]=1$
(b) $E[Y]=2$
(c) $E[Y]=0$

Problem 7

To obtain a driving license, Mina needs to pass her driving test. Every time Mina takes a driving test, with probability $1 / 2$, she will clear the test independent of her past. Mina failed her first test. Given this, let Y be the additional number of tests Mina takes before obtaining a license. Then,
(a) $E[Y]=1$
(b) $E[Y]=2$
(c) $E[Y]=0$

Solution: (b)
Y is defined as the number of additional tests Mina takes, so this is independent of the fact that she failed her first test. Y is a geometric RV with $p=1 / 2$. Hence, $E[Y]=1 / p=2$.

Problem 8

Let $X_{i}, 1 \leq i \leq 4$ be independent Bernoulli random variable each with mean $p=0.1$. Let $X=\sum_{i=1}^{4} X_{i}$. That is, X is a Binomial random variable with parameters $n=4$ and $p=0.1$. Then,
(a) $E\left[X_{1} \mid X=2\right]=0.1$
(b) $E\left[X_{1} \mid X=2\right]=0.5$
(c) $E\left[X_{1} \mid X=2\right]=0.25$

Problem 8

Let $X_{i}, 1 \leq i \leq 4$ be independent Bernoulli random variable each with mean $p=0.1$. Let $X=\sum_{i=1}^{4} X_{i}$. That is, X is a Binomial random variable with parameters $n=4$ and $p=0.1$. Then,
(a) $E\left[X_{1} \mid X=2\right]=0.1$
(b) $E\left[X_{1} \mid X=2\right]=0.5$
(c) $E\left[X_{1} \mid X=2\right]=0.25$

Solution: (b)
We have $P\left(X_{1}=1 \mid X=2\right)=0.5$, because

$$
P\left(X_{1}=1 \mid X=2\right)=\frac{P\left(X_{1} \cap X=2\right)}{P(X=2)}=\frac{p \cdot\binom{3}{1} p(1-p)^{2}}{\binom{4}{2} p^{2}(1-p)^{2}}=\frac{\binom{3}{1}}{\binom{4}{2}}=0.5
$$

Note that $\binom{4}{2} p^{2}(1-p)^{2}$ is the probability of seeing 2 heads out of 4 tosses, and $\binom{3}{1} p(1-p)^{2}$ is the probability of seeing 1 head in the last 3 tosses.
Hence,

$$
E\left[X_{1} \mid X=2\right]=1 \cdot P\left(X_{1}=1 \mid X=2\right)+0 \cdot P\left(X_{1}=0 \mid X=2\right)=0.5
$$

Lectures' summaries

How do we reason under uncertainty?

- Using Probability Theory
- Main idea: Assign each event a measure between 0 to 1: to signify its likelihood
- Then proceed very carefully - or our intuitions and observations will not match

Set theory

Back to basics: Set theory

- A set is a collection of objects, which are the elements of the set
- If S is a set and x is an element of S, we write $x \in S$.
- If x is not an element of S, we write $x \notin S$. A set can have no elements, in which case it is called the empty set, denoted by \emptyset.
- Apple $\in\{$ Orange, Apple, Pear $\}$ Strawberry $\notin\{$ Orange, Apple, Pear $\}$

Back to basics: Set theory

- Two ways of writing a set down:

$$
S=\{1,2,3,4,5,6\}
$$

or

$$
S=\{x \mid x \text { is a possible outcome of a throw of a die }\}
$$

"The collection of all elements that satisfy a certain condition is a set"

Set theory

- Size of a set S is denoted by $|S|$
- $\mid\{$ Orange, Apple, Pear $\} \mid=3$
- S is a subset of $T, S \subset T$, means every element of S is also an element of T :
$\forall x \in S, x \in T$
- Apple, Pear $\} \subset\{$ Orange, Apple, Pear $\}$
- \{ Orange, Apple, Pear $\} \subset\{$ Orange, Apple, Pear $\}$
- \{Apple, Banana $\} \not \subset\{$ Orange, Apple, Pear $\}$
- If $S \subset T$ and $T \subset S$ then,

$$
S=T
$$

Universal Set

- Ω : contains all objects that could conceivably be of interest in a particular context.
- In the context of coin tossing, $\Omega=\{H, T\}$.
- In the context of dice, $\Omega=\{1,2,3,4,5,6\}$.

Set operations

- Complement: $S^{c}=\{x \in \Omega \mid x \notin S\}$

Example: $\Omega=\{1,2,3,4,5,6\} ; \quad S=\{2,5\}$ $S^{c}=\{1,3,4,6\}$
Note that, $\Omega^{c}=\emptyset$

- The union of two sets S and T is the set of all elements that belong to S or T (or both), and is denoted by $S \cup T$.

$$
S \cup T=\{x \mid x \in S \text { or } x \in T\}
$$

- The intersection of two sets S and T is the set of all elements that belong to both S and T, and is denoted by $S \cap T$.

$$
S \cap T=\{x \mid x \in S \text { and } x \in T\}
$$

Power Set

By default: $\emptyset \subset S \subset \Omega$.
Power Set: Set of all subsets

$$
\begin{gathered}
S=\{1,2,3\} \\
2^{S}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
\end{gathered}
$$

Disjoint Set

S and T are disjoint if $S \cap T=\emptyset$
$S_{1}, S_{2}, \ldots, S_{n}$ forms a partition of S if S_{i} and S_{j} are disjoint for any $i \neq j$ and $S_{1} \cup S_{2} \cup \cdots \cup S_{n}=S$.

Venn Diagram

(a)

(d)

(b)

(e)

(c)

(f)

Courtesy: Textbook

Venn Diagram - Partitions

- In (e), S, T, and U do not form partitions of W. However, S, T, U, and $(S \cup T \cup U)^{C}$ form partitions of W.
- In (f), S, T, and U form partitions of W.

Similarly,

- In (a),(b) and (c), S and T do not form partitions of W. However, $(S \cup T)$ and $(S \cup T)^{C}$ form partitions of W.
- In (d), T and $T^{C} \cap S$ form partitions of S. Furthermore, S and S^{C} form partitions of W.

Set Algebra

Using the above definitions, we can show that:

- Intersection Commutativity $S \cap T=T \cap S$
- Union Commutativity $S \cup T=T \cup S$
- Intersection Associativity $S \cap(T \cap U)=(S \cap T) \cap U$
- Union Associativity $S \cup(T \cup U)=(S \cup T) \cup U$
- Intersection Distributivity $S \cap(T \cup U)=(S \cap T) \cup(S \cap U)$
- Union Distributivity $S \cup(T \cap U)=(S \cup T) \cap(S \cup U)$

Summary: Sets

- A set is a collection of objects, which are the elements of the set
- $x \in S, x \notin S$, empty set \emptyset, number of elements in a set $|S|$
- Subset: $S \subset T$
- Universal set Ω, set complement: $S^{c}=\{x \in \Omega \mid x \notin S\}$
- Set union $S \cup T=\{x \mid x \in S$ or $x \in T\}$, intersection $S \cap T=\{x \mid x \in S$ and $x \in T\}$
- Power Set: Set of all subsets
- Disjoint sets $S \cap T=\emptyset$
- Partition of a set: S_{i} and S_{j} are disjoint for any $i \neq j$ and $S_{1} \cup S_{2} \cup \cdots \cup S_{n}=S$

Model of Probability

Model of Probability

A probabilistic model is a mathematical description of an uncertain situation. Two fundamental elements of a probabilistic model are

- Sample Space Ω : all possible outcomes of an experiment
- Probability Law:

$$
A \subset \Omega ; \quad P(A),
$$

where A is an event (a set of possible outcomes) and
$P(A)$ is a non-negative number presenting the likelihood of observing the event A.

Probabilistic model involves an experiment, which produces an event from the sample space.

Probability Laws

- Probability represents likelihood of any outcomes or of any set of possible outcomes.
- The probability law assigns to every event A, a number $P(A)$, call the probability of A.

Axioms of Probability

- Nonnegativity:

$$
P(A) \geq 0
$$

- Additivity: For any two disjoint sets A and B,

$$
P(A \cup B)=P(A)+P(B)
$$

Holds for infinitely many disjoints events $A_{1}, A_{2}, A_{3}, \ldots$

$$
P\left(\cup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right) .
$$

- Normalization:

$$
P(\Omega)=1
$$

Discrete Probability Models

If Ω consists of a finite number of possible outcomes, we are dealing with discrete probability models.
For example,

- Coin Toss
- Dice Rolling

For discrete probabilistic models, the probability law is specified by the probabilities of the events that consists of a single element (that are disjoint by nature).

$$
\begin{gathered}
A=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subset \Omega \\
P(\Omega)=P\left(\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}\right)=P\left(s_{1}\right)+P\left(s_{2}\right)+\ldots+P\left(s_{n}\right)
\end{gathered}
$$

Uniform Discrete Model

If Ω is finite and all possible outcomes are equally likely, it is a uniform discrete model. Then, the probability of each element of Ω has the probability of

$$
\frac{1}{|\Omega|}
$$

More generally, $\forall A \subset \Omega$

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Uniform Discrete Model - Example

Throwing a fair die is an example of a uniform discrete model.
$\Omega=\{1,2,3,4,5,6\}$ Uniform model:

$$
P(\{i\})=\frac{1}{|\Omega|}=\frac{1}{6}
$$

for $i=1,2,3,4,5,6$.
A : even number shows up

$$
\begin{gathered}
A=\{2,4,6\} \\
|A|=3 \\
P(A)=\frac{|A|}{|\Omega|}=\frac{3}{6}=\frac{1}{2} .
\end{gathered}
$$

Conditional Probability

Conditional Probabilities

Conditional probability provides us with a way to reason about the outcome of an experiment based on partial information or observations.

Consider rolling a fair die. What is the probability that the outcome is 6 given that we know that the outcome is an even number.

- Suppose that you rolled a die while blindfolding yourself. Your friend next to you told you that the number is even. Does that change your probability space?
We can express this conditional probability using $P(A \mid B)$: conditional probability of A given B, where $P(B)>0$. In the above example,
- $A=\{$ The outcome is 6$\}$
- $B=\{$ The outcome is an even number $\}$

Conditional Probabilities

- A new probability space to be defined.
- The universe (sample space) has been changed to B
- The probability has now to be normalized by $P(B)$

Definition of conditional probability,

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{|A \cap B|}{|B|}
$$

- If A and B are disjoint, i.e., $A \cap B=\emptyset$, then $P(A \mid B)=0$. Why?
- In the case of disjoint A and $B, A \cap B=\emptyset$.
- Which means, $P(A \cap B)=0$. So $P(A \mid B)=0$.

New probability space $P(\cdot \mid B)$

Verify that the axioms of probability are satisfied!

- Nonnegativity: $P(A \mid B)=\frac{P(A \cap B)}{P(B)} \geq 0$ since $P(A \cap B) \geq 0$
- Additivity: For any two disjoint sets A and C, show that $P(A \cup C \mid B)=P(A \mid B)+P(C \mid B)$.

$$
\begin{aligned}
& P(A \cup C \mid B)=\frac{P((A \cup C) \cap B)}{P(B)} \\
& =\frac{P((A \cap B) \cup(C \cap B)))}{P(B)}=\frac{P(A \cap B)+P(C \cap B)}{P(B)} \\
& =P(A \mid B)+P(C \mid B) .
\end{aligned}
$$

- Normalization: New sample space is B.

$$
P(B \mid B)=\frac{P(B \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1
$$

Example

Let us have two unfair coin tosses where the joint probability has

$$
\begin{aligned}
& P(\{H H\})=1 / 2 \\
& P(\{H T\})=1 / 4 \\
& P(\{T H\})=1 / 8 \\
& P(\{T T\})=1 / 8
\end{aligned}
$$

What is the probability that we have exactly one H given that the second toss shows H ?

Define A and B first.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(\{T H\})}{P(\{H H, T H\})}=\frac{1 / 8}{1 / 2+1 / 8}=\frac{1}{5} .
$$

Another Exercise

Example: Throw of two dice. Each of the 36 outcomes are equally likely

- $A=$ max of two dice is less than 5
- $B=\min$ of the two dice is greater than 1

What is $P(A \mid B)$?

Another Exercise

Example: Throw of two dice. Each of the 36 outcomes are equally likely

- $A=$ max of two dice is less than 5
- $B=\min$ of the two dice is greater than 1

What is $P(A \mid B)$?

- $P(A)=\frac{16}{36}$
- $P(B)=\frac{25}{36}$
- $P(A \cap B)=\frac{9}{36}$
- $P(A \mid B)=\frac{9}{25}$

Sequential Model for Conditional Probabilities

Many experiments have a sequential characteristic: the future outcomes depending on the past.

For example, consider an example involving three coin tosses.

- The first toss is unbiased (fair): $P(H)=0.5$ and $P(T)=0.5$.
- Based on the outcome of the first toss, the second toss is biased towards that outcome by 60%.
- For example, if the outcome of the first toss is H, then the second toss has $P(H)=0.6$ and $P(T)=0.4$.
- Based on the outcome of the second toss, the third toss is biased towards that outcome by 70%.

Let us draw a tree-based sequential description.

Sequential Model for Conditional Probabilities

How to setup a tree-based sequential description and use it?

1. Leaves represent events of interest, which occur in a sequential manner
2. Branches represent the conditional probability
3. The probability of the end-leaf can be computed by multiplying conditional probabilities from the root.

Sequential Model for Conditional Probabilities

Multiplication Rule

- We learned conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

which can be re-written as

$$
P(A \cap B)=P(B) P(A \mid B)=P(A)(B \mid A)
$$

- Now, what about

$$
P(A \cap B \cap C)=?
$$

Multiplication Rule

- We learned conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

which can be re-written as

$$
P(A \cap B)=P(B) P(A \mid B)=P(A)(B \mid A)
$$

- Now, what about

$$
\begin{aligned}
P(A \cap B \cap C) & =P((A \cap B) \cap C) \\
& =P(D \cap C), \text { where } D=(A \cap B) \\
& =P(D) P(C \mid D) \\
& =P(A \cap B) P(C \mid A \cap B) \\
& =P(A) P(B \mid A) P(C \mid A \cap B)
\end{aligned}
$$

These are other equivalent results for $P(A \cap B \cap C)$.

Multiplication Rule

In general,

$$
\begin{aligned}
P\left(\cap_{i=1}^{n} A_{i}\right) & \equiv P\left(A_{1} \cap A_{2} \cap \ldots A_{n}\right) \\
& =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \ldots P\left(A_{n} \mid \cap_{i=1}^{n-1} A_{i}\right)
\end{aligned}
$$

Total Probability Theorem and Bayes' Rule

Total Probability Theorem

- Let $A_{1}, A_{2}, \ldots, A_{n}$ form a partition of Ω and $P\left(A_{i}\right)>0$
- Then, for any event B, we have

$$
\begin{aligned}
P(B) & =P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)+\cdots+P\left(A_{n} \cap B\right) \\
& =P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+\cdots+P\left(A_{n}\right) P\left(B \mid A_{n}\right) .
\end{aligned}
$$

Bayes' Rule

Let $A_{1}, A_{2}, \ldots, A_{n}$ partition Ω and $P\left(A_{i}\right)>0$. For any B such that $P(B)>0$,

$$
\begin{aligned}
P\left(A_{i} \mid B\right) & =\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P(B)} \\
& =\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+\cdots+P\left(A_{n}\right) P\left(B \mid A_{n}\right)}
\end{aligned}
$$

Independence

Independence

- Consider flipping a fair coin twice in a row.
- If we know the coin is fair, does knowing the result of the first flip give us any information about the result of the second flip?
- What's the probability the coin comes up heads on the second flip?
- What's the probability the coin comes up heads on the second flip given that it came up heads on the first flip?

Probabilistic Independence

- Intuitively, when knowing that one event occurred doesn't change the probability that another event occurred or will occur, we say that the two events are probabilistically independent.
- We say that two events A and B are independent if and only if (iff)

$$
P(A \cap B)=P(A) P(B)
$$

and this implies that $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Rolling Two Dice

- Question: Suppose you roll two fair four sided dice. Are the events $A=$ "maximum is less than 3 " and $B=$ "sum is greater than 3 " independent?

Sample Space

$|A|=4$

$|B|=13$

- Answer 2: Formally,

$$
P(A \cap B)=\frac{1}{16}, P(A)=\frac{1}{4} \text { and } P(B)=\frac{13}{16}
$$

Since $\frac{1}{16} \neq \frac{1}{4} \cdot \frac{13}{16}$, the events are not independent.

An Event and Its Complement

- Question: Are A and A^{c} independent if $0<P(A)<1$?
- Answer 1: Intuitively, no. If you know A happens, then you know A^{C} does not happen.
- Answer 2: Formally, $P\left(A \cap A^{C}\right)=P(\emptyset)=0$. If $0<P(A)<1$, then

$$
P(A) P\left(A^{C}\right) \neq 0 .
$$

Independence of Three Events

- Three events A, B, and C are independent iff:

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B) \\
P(A \cap C) & =P(A) P(C) \\
P(B \cap C) & =P(B) P(C) \\
P(A \cap B \cap C) & =P(A) P(B) P(C)
\end{aligned}
$$

- First three conditions imply that any two events are independent (known as pairwise independence)
- Pairwise independence does not imply the independence of all events.
- Suppose we have a finite collection of events $A_{1}, A_{2}, \ldots, A_{n}$. These events are said to be independent iff

$$
P\left(\cap_{i \in \mathcal{S}} A_{i}\right)=\prod_{i \in \mathcal{S}} P\left(A_{i}\right), \text { for every subset } \mathcal{S} \text { of }\{1,2, \ldots, n\}
$$

Conditional Independence

- A and B are conditionally independent given C iff

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

- This is equivalent to $P(A \mid B \cap C)=P(A \mid C)$, assuming that $P(B \mid C)>0$.
- If C is given, additional information of knowing B has occurred does not change the conditional probability of A.
- This is equivalent to $P(B \mid A \cap C)=P(B \mid C)$, assuming that $P(A \mid C)>0$.
- If C is given, additional information of knowing A has occurred does not change the conditional probability of B.

Counting

Counting and Discrete Probability Laws

- If Ω is finite and all outcomes are equally likely, then

$$
P(A)=\frac{|A|}{|\Omega|}
$$

- The calculation of probabilities often involve counting the number of outcomes in various events.
- Sometimes it's challenging to compute $|A|$ and $|\Omega|$ and they are too large work out by hand...

We covered different counting methods:

- Permutations
- k-Permutations
- Combinations
- Partitions

The Counting Principle

- Consider a sequential process with s stages. At each stage i, there are n_{i} possible results. How many outcomes does the process have?

- How many possible outcomes are possible from a sequence of s stages?

The Counting Principle

- Consider a sequential process with s stages. At each stage i, there are n_{i} possible results. How many outcomes does the process have?

- How many possible outcomes are possible from a sequence of s stages?

$$
n_{1} \times n_{2} \times \cdots \times n_{s}=\prod_{i=1}^{s} n_{i}
$$

Counting Permutations

- Let S be a set of n objects.
- Consider an n-stage experiment where at each stage we choose one object without replacement.
- We pick objects until there's no more objects to pick.
- This process produces an ordering or permutation of the n objects.
- For example, if $n=3$ and $S=\{a, b, c\}$, one ordering can be bac.
- This is an n stage process. We have $s_{1}=n, s_{2}=n-1, \ldots$, $s_{n}=1$.
- By the counting principle, the number of permutations is

$$
n(n-1)(n-2) \cdots 1=n!
$$

- For permutations, order matters, i.e., $a b c \neq b a c$.

Counting k-Permutations

- Let S be a set of n objects.
- Consider a k-stage experiment where $k \leq n$. At each stage we choose one object without replacement.
- We pick only k objects.
- This process produces an ordering of the k objects, which is also called a k-permutation.
- For example, if $n=3, k=2$, and $S=\{a, b, c\}$, one possible 2-permutation is ba and another is $a b$.
- This is a k-stage process where $s_{1}=n, s_{2}=n-1, \ldots$, $s_{k}=n-k+1$.
- By the counting principle, the number of permutations is

$$
n(n-1)(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

- Order also matters for k-permutations.

Counting Combinations

- Let S be a set of n objects. How many subsets of size k are there?
- The number of k-permutations is $n!/(n-k)$! but this over counts the number of subsets, e.g., $a b$ and $b a$ are different 2 -permutations of $\{a, b, c\}$, but the same subset $\{a, b\}$.
- Order does NOT matters for combinations.
- k ! different k-permutations belong to the same subset of k objects, so the number of " k-combinations" is

$$
\frac{\frac{n!}{(n-k)!}}{k!}=\frac{n!}{(n-k)!k!},
$$

which is denoted $\binom{n}{k}$, pronounced as " n choose k ".

- Note that $\binom{n}{0}=1$

Counting Partitions

- A combination divides items into one group of k and one group of $n-k$. Thus, a combination can be viewed as a partition of the set in two.
- Consider an experiment where we divide n objects into ℓ groups with sizes $n_{1}, n_{2}, \ldots, n_{\ell}$ such that $n=\sum_{i=1}^{\ell} n_{i}$.
- How many partitions are there?
- There are $\binom{n}{n_{1}}$ ways to choose the objects for the first partition. This leaves $n-n_{1}$ objects. There are $\binom{n-n_{1}}{n_{2}}$ ways to choose objects for the second partition. There are $\binom{n-n_{1}-n_{2}-\ldots-n_{\ell-1}}{n_{\ell}}$ ways to choose the objects for the last group.

Counting Partitions

- Using the counting principle, the number of partitions is thus:

$$
\begin{aligned}
&\binom{n}{n_{1}} \cdot\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-n_{2}-\ldots-n_{\ell-1}}{n_{\ell}} \\
&= \frac{n!}{n_{1}!\left(n-n_{1}\right)!} \cdot \frac{\left(n-n_{1}\right)!}{n_{2}!\left(n-n_{1}-n_{2}\right)!} \cdots \frac{\left(n-n_{1}-n_{2}-\ldots-n_{\ell-1}\right)!}{n_{\ell}!\left(n-n_{1}-n_{2}-\ldots-n_{\ell}\right)!}
\end{aligned}
$$

- Note that $\left(n-n_{1}-n_{2}-\ldots-n_{\ell}\right)!=0!=1$.
- Canceling terms yields the final result:

$$
\frac{n!}{n_{1}!\cdots n_{\ell}!}
$$

Summary of Counting Problems

Structure	Description	Order Matters	Formula
Permutation	Number of ways to order n ob- jects	Yes	$n!$
k-Permutation	Number of ways to form a se- quence of size k using k dif- ferent objects from a set of n objects	Yes	$\frac{n!}{(n-k)!}$
Combination	Number of ways to form a set of size k using k different ob- jects from a set of n objects	No	$\frac{n!}{k!(n-k)!}$
Partition	Number of ways to partition n objects into ℓ groups of size n_{1}, \ldots, n_{ℓ}	No	$\frac{n!}{n_{1}!\ldots n!} n_{\ell}$

The Binomial Law

- If we toss n coins, what's the probability of seeing k heads, denoted as $P_{n}(k)$? (without exhaustively enumerating all sequences?)
- Any single sequence of length n with k heads has probability

$$
p^{k}(1-p)^{n-k}
$$

- But how many different sequences of length n contain k heads?

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

where $\binom{n}{0}=1$.

- Thus,

$$
P_{n}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

The Binomial Law

- The following equation is often called the binomial probabilities.

$$
P_{n}(k)=\binom{n}{k} p^{k}(1-p)^{n-k},
$$

where $\binom{n}{k}$ is referred to as binomial coefficient.

Discrete random variables and
 Probability mass functions

Random Variables Give An Easy Way to Specify

Events

- If we have a function $X: \Omega \rightarrow \mathbb{R}$, we can use it to construct a different event for each value of $x \in \mathbb{R}$:

$$
\{X=x\}=\{o \mid o \in \Omega \text { and } X(o)=x\}
$$

- In the dice example, the event $\{X=x\}$ is the set of outcomes $o \in \Omega$ that are mapped to the the same value x by the function X.
For example,

$$
\begin{gathered}
\{X=2\}=\{(1,2),(2,1),(2,2)\} \\
\{X=3\}=\{(1,3),(2,3),(3,3)(3,1),(3,2)\} \\
\{X=1\}=\{(1,1)\}
\end{gathered}
$$

Discrete Random Variables and Probability

- A random variable is called discrete if its input (sample space) is either finite or countably infinite.
- We can compute the probability of an event $\{X=x\}$ by decomposing it into atomic events and using the probability rule:

$$
P(X=x)=p_{X}(x)=P(\{o \mid o \in \Omega \text { and } X(o)=x\})
$$

- Probability law: A function $p_{X}(x)$ that maps event to a number between 0 and 1 that satisfies the probability axioms:

1. Nonnegativity: $p_{X}(x) \geq 0, \forall x$.
2. Normalization: $\sum_{x} p_{X}(x)=1$.

Example: Maximum of Dice Rolls

- For example, in the event of $\{X=2\}$ for the dice rolling example where $X\left(r_{1}, r_{2}\right)=\max \left(r_{1}, r_{2}\right)$

$$
\begin{aligned}
P(X=2) & =P(\{(1,2),(2,1),(2,2)\}) \\
& =P((1,2))+P((2,1))+P((2,2))=3 / 16
\end{aligned}
$$

- We can work out the probability for all possible values of x :

In general. . .

- The probability associated with the event $\{X=x\}$ for each element $x \in \mathbb{R}$ of a discrete random variable X is referred to as the probability mass function or PMF of the random variable.
- The PMF is denoted by $P(X=x)$ or $p_{X}(x)$.

- The x-axis represents all possible outcomes of the event
- The y-axis represents the associated probabilities

Common Discrete Random Variables

Discrete Uniform Random Variables

- A discrete uniform random variable X with range $[a, b]$ takes on any integer value between (and including) a and b with the same probability
- For example, the random variable that maps a fair six-sided dice roll to the number that comes up is a uniform random variable with $a=1, b=6$ and $P(X=k)=1 / 6$ for $k=1, \ldots, 6$.
- The PMF of a discrete uniform random variable X is

$$
P(X=k)=\frac{1}{b-a+1} \text { for } k=a, \ldots, b
$$

- Used to model probabilistic situations where each of the values a, \ldots, b are equally likely.

Bernoulli Random Variables

- Suppose we have an experiment with two outcomes H and T. H happens with probability p and T with probability $1-p$, $0<p<1$.
- We define a random variable X such that $X(H)=1$ and $X(T)=0$.
- This is called a Bernoulli random variable X that takes the two values 0 or 1 .
- Its PMF looks like

$$
P(X=k)= \begin{cases}1-p & \text { if } k=0 \\ p & \text { if } k=1\end{cases}
$$

- You can also define $X(H)=0$ and $X(T)=1$, with $P(X=1)=p^{\prime}=1-p$

Bernoulli Random Variables: Examples

- Whether a coin lands heads or tails.
- Whether a server is online or offline.
- Whether an email is spam or not.
- Whether a pixel in a black and white image is black or white.
- Whether a patient has a disease or not.

Binomial Random Variable

- A binomial random variable is the combination of independent and identically distributed Bernoulli random variables
- Suppose we flip n coins independently, where each coin has probability p of being heads
- The set of outcomes is:

$$
\Omega=\{(T T T \ldots T T),(T T T \ldots T H), \ldots,(H H H \ldots H H)\}
$$

- Define a random variable X where for each $o \in \Omega$,

$$
X(o)=\text { "the number of heads in outcome } o \text { " }
$$

- We're already shown that $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.

Binomial Random Variables: Examples

- The number of heads in N coin tosses.
- The number of servers that fail in a cluster of N servers.
- The number of games a football team wins in a season of N games (assuming i.i.d.).
- The number of True/False questions you get correct if you guess each of N questions.

Geometric Random Variables

- Suppose we flip a biased coin repeatedly until it lands heads. Let X be the number of tosses needed for a head to come up for the first time.
- The PMF of a geometric random variable X is

$$
P(X=k)=(1-p)^{k-1} \cdot p \quad \text { for } k=1,2,3, \ldots
$$

- Used to model the number of repeated independent trials up to (and including) the first "successful" trial.
- Example: the number of patients we test before the first one we find who has a given disease.

Geometric Random Variables: Example

- Products made by a machine have a 3% defective rate.
- What is the probability that the first defect occurs in the fifth item inspected?

$$
P(X=k)=(1-p)^{k-1} \cdot p=(1-0.03)^{5-1} \cdot 0.03=0.0265 \ldots
$$

Poisson Random Variables

- A Poisson random variable X is a random variable that has the following PMF

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \quad \text { for } k=0,1,2, \ldots
$$

- The Poisson distribution is one of the most widely used probability distributions.
- Built based on Taylor series: $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.
- Think about Poisson RV as a framework that provides approximation of a real-life random variable as a function of λ.

Poisson Random Variables

- Think about Poisson RV as a framework that provides approximation of different PMFs as a function of λ.

Poisson Random Variables

- It is generally used in scenarios where we are counting the occurrences of certain events within an interval of time or space.
- The number of typos in a book with n words.
- The number of cars that crash in a city on a given day.
- The number of phone calls arriving at a call center per minute etc.
- λ represents the expected number of events (we will learn more about this).
- The average number of typos in a book.
- The average number of car crash per day.
- The average number of phone calls per minute.

Poisson Random Variables: Example

- Suppose that the number of phone calls arriving at a call center per minute can be modeled by a discrete Poisson PMF.
- In average, the call center receives 10 calls.
- What is the probability that the center will receive 5 calls?

$$
\begin{gathered}
P_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \\
P_{X}(k)=e^{-10} \frac{10^{5}}{5!}=0.0378 \ldots
\end{gathered}
$$

Poisson Random Variables

- A Poisson PMF with $\lambda=n p$ is a good approximation for a binomial PMF with very small p and very large n if $k \ll n$
- A bionomial RV X is the number of heads (k) in the n-toss sequence, where the coin comes up a head with probability p.
- Example: $n=100$ and $p=0.01$ for the binomial r.v. where as $\lambda=n p$ for the Poisson r.v.

- Poisson PMF provides much simpler models and calculations: $\binom{n}{k} p^{k}(1-p)^{n-k}$ vs. $e^{-\lambda} \frac{\lambda^{k}}{k!}$

Summary: Discrete Random Variables

- Uniform: For $k=a, \ldots, b$:

$$
P(X=k)=\frac{1}{b-a+1}
$$

- Bernoulli: For $k=0$ or 1 :

$$
P(X=k)= \begin{cases}1-p & \text { if } k=0 \\ p & \text { if } k=1\end{cases}
$$

- Binomial: For $k=0, \ldots, N$

$$
P(X=k)=\binom{N}{k} p^{k}(1-p)^{N-k}
$$

- Geometric: For $k=1,2,3, \ldots, P(X=k)=(1-p)^{k-1} \cdot p$
- Poisson: $P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$ for $k=0,1,2, \ldots$

Expectation and Variance

Expected Value

- For a random variable X, the expected value is defined to be:

$$
E[X]=\sum_{x \in \mathbb{R}} x P(X=x)
$$

i.e., the probability-weighted average of the possible values of X.

- $E[X]$ is also called the expectation or mean of X.
- Why do we care to know about the expected value?
- Given a certain PMF, what is the "average" outcome that I am expecting to have?
- For example, if I bet the same amount of money on roulette and play it for a long-term period, how much do I expect to make?

Expected Value: Question

- Expectation:

$$
E[X]=\sum_{k \in \mathbb{R}} k P(X=k)
$$

- If X maps to $\{1,2,6\}$ and

$$
P(X=1)=1 / 3 \quad, \quad P(X=2)=1 / 2 \quad, \quad P(X=6)=1 / 6
$$

$$
\text { then } E[X]=1 \cdot \frac{1}{3}+2 \cdot \frac{1}{2}+6 \cdot \frac{1}{6}=2.33 \ldots
$$

Expectations of Common Random Variables

- Uniform on $\{a, a+1, \ldots, b\}: E[X]=\frac{a+b}{2}$
- Bernoulli: $E[X]=(1-p) \cdot 0+p \cdot 1=p$
- Binomial: $E[X]=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}=n p$
- Geometric: $E[X]=\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} p=\frac{1}{p}$
- Poisson: $E[X]=\sum_{k=0}^{\infty} k \cdot \frac{e^{-\lambda}}{k!} \lambda^{k}=\lambda$

Properties of Expectation

- Linearity of Expectation: If a and b are any real values, then the expectation of $a X+b$ is:

$$
E[a X+b]=a \cdot E[X]+b
$$

- Expectation of Expectation: Applying the expectation operator more than once has no effect. $E[E[X]]=E[X]$ since $E[X]$ is already a constant.

Variance

- Definition: Variance measures how far we expect a random variable to be from its average:

$$
\operatorname{var}(X)=E\left[(X-E[X])^{2}\right]=\sum_{k}(k-E[X])^{2} \cdot P(X=k)
$$

- An equivalent definition is

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}
$$

- Definition: we generally define the $\mathbf{n}^{\text {th }}$ moment of X as $E\left[X^{n}\right]$, the expected value of the random variable X^{n}.

Variance of Common Random Variables

- Bernoulli: $\operatorname{var}[X]=p(1-p)$
- Binomial: $\operatorname{var}[X]=n p(1-p)$
- Geometric: $\operatorname{var}[X]=\frac{1-p}{p^{2}}$
- Uniform: $\operatorname{var}[X]=\frac{(b-a+1)^{2}-1}{12}$
- Poisson: $\operatorname{var}[X]=\lambda$

Standard Deviation

- The term standard deviation simply refers to the positive square root of the variance, which always exists and is also positive:

$$
\operatorname{std}(X)=\sqrt{\operatorname{var}(X)}
$$

- The standard deviation is also a measure of dispersion around the mean.
- One reason that people like to report standard deviations instead of variances is that the units are the same as X.
- $\operatorname{var}(X)=E\left[(X-E[X])^{2}\right]$ vs. $\operatorname{std}(X)=\sqrt{E\left[(X-E[X])^{2}\right]}$
- Example 1: If X is height in feet, then $\operatorname{var}(X)$ has units in square feet while $\operatorname{std}(X)$ again has units in feet.

Functions of Random Variables

Functions of Random Variables

- If X is a random variable and $f: \mathbb{R} \rightarrow \mathbb{R}$ then

$$
Y=f(X)
$$

is also a random variable with PMF:

$$
P(Y=k)=P(f(X)=k)=\sum_{o \in \Omega \text { with } f(X(o))=k} P(o)
$$

- Example, let X represent an outcome from a 6 sided fair die where

$$
P(X=i)=1 / 6, \forall i .
$$

Suppose that you will receive money that is the square of the outcome, and we define a r.v. Y as the amount of money.

- This function $Y=f(X)$ can be expressed as

$$
Y=X^{2}
$$

Functions of Random Variables

- Note that Y is also a random variable, whose PMF looks like.

Functions of Random Variables

- Expectation of $Y=f(X)$:

$$
\begin{gathered}
E[Y]=\sum_{y} y P(Y=y)=\sum_{y} y P\left(X=f^{-1}(y)\right) \\
=\sum_{x} f(x) P(X=x)
\end{gathered}
$$

- For the previous example,

$$
\begin{gathered}
E[X]=1 \times 1 / 6+2 \times 1 / 6+\cdots+6 \times 1 / 6=3.5 \\
E[Y]=1^{2} \times 1 / 6+2^{2} \times 1 / 6+\cdots+6^{2} \times 1 / 6=\$ 15.2
\end{gathered}
$$

Functions of Random Variables

- Variance of Y :

$$
\begin{aligned}
\operatorname{var}[Y] & =E\left[(Y-E[Y])^{2}\right]=\sum_{k \in\{1,4, \ldots, 36\}}(k-E[Y])^{2} \cdot P(Y=k) \\
& =\sum_{k \in\{1,4, \ldots, 36\}}(k-E[Y])^{2} \cdot P\left(X=f^{-1}(k)\right) \\
& =(1-E[Y])^{2} P(X=\sqrt{1})+(4-E[Y])^{2} P(X=\sqrt{4})+\cdots
\end{aligned}
$$

- For the previous example,

$$
\begin{gathered}
E[X]=1 \times 1 / 6+2 \times 1 / 6+\cdots+6 \times 1 / 6=3.5 \\
E[Y]=1^{2} \times 1 / 6+2^{2} \times 1 / 6+\cdots+6^{2} \times 1 / 6=\$ 15.2
\end{gathered}
$$

- Then, the variance for Y is

$$
\begin{gathered}
\operatorname{var}[Y]=\left(1^{2}-15.2\right)^{2} \times 1 / 6+\left(2^{2}-15.2\right)^{2} \times 1 / 6+\cdots \\
+\left(6^{2}-15.2\right)^{2} \times 1 / 6=149.1
\end{gathered}
$$

Example: Linear function

- If $Y=a X+b$, then $E[Y]=a E[X]+b$ and $\operatorname{var}[Y]=a^{2} \operatorname{var}[X]$

$$
\begin{aligned}
\operatorname{var}[Y] & =\operatorname{var}[a X+b] \\
& =\sum_{k}(a k+b-E[a X+b])^{2} P(X=k) \\
& =\sum_{k}(a k+b-a E[X]-b)^{2} P(X=k) \\
& =\sum_{k}(a k-a E[X])^{2} P(X=k) \\
& =a^{2} \sum_{k}(k-E[X])^{2} P(X=k) \\
& =a^{2} \operatorname{var}[X] .
\end{aligned}
$$

Multiple Random Variables

Multiple Random Variables

- Consider two random variables, X and Y associated with the same experiment.
- For $x, y \in \mathbb{R}$, we can define events of the form

$$
\{X=x, Y=y\}=\{X=x\} \cap\{Y=y\}
$$

- The probabilities of these events give the joint PMF of X and Y :
$p_{X, Y}(x, y)=P(X=x, Y=y)=P(X=x$ and $Y=y)=P(\{X=x\} \cap\{Y=y\})$
- Useful for describing multiple properties over the outcome space of a single experiment, e.g., pick a random student and let X be their height and Y be their weight.

Tabular Representation of Joint PMFs

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	$Y=1$	$Y=2$	$Y=3$	$Y=4$
$X=1$	0.1	0.1	0	0.2
$X=2$	0.05	0.05	0.1	0
$X=3$	0	0.1	0.2	0.1

- e.g., $P(X=2, Y=3)=$?, $P(X=3, Y=1)=$?, \ldots
- Given the joint PMF, can we compute $P(X=x)$ and $P(Y=y)$?

$$
\begin{aligned}
& p_{X}(x)=P(X=x)=\sum_{y} P(X=x, Y=y) \\
& p_{Y}(y)=P(Y=y)=\sum_{x} P(X=x, Y=y)
\end{aligned}
$$

- If we start with the joint PMF of X and Y, we say $p_{X}(x)$ is the marginal PMF of X and $p_{Y}(y)$ is the marginal PMF of Y.

Computing Marginals from the Joint Distribution

- Suppose Y takes the values $y_{1}, y_{2}, \ldots, y_{N}$, then

$$
\left\{Y=y_{1}\right\},\left\{Y=y_{2}\right\}, \ldots,\left\{Y=y_{N}\right\}
$$

form partitions of Ω_{Y}.

- Hence, $\{X=x\}$ can be partitioned into

$$
\{X=x\} \cap\left\{Y=y_{1}\right\},\{X=x\} \cap\left\{Y=y_{2}\right\}, \ldots,\{X=x\} \cap\left\{Y=y_{N}\right\}
$$

- Therefore,

$$
\begin{aligned}
P(X=x)= & P(\{X=x\}) \\
= & P\left(\{X=x\} \cap\left\{Y=y_{1}\right\}\right)+P\left(\{X=x\} \cap\left\{Y=y_{2}\right\}\right) \\
& \quad \cdots+P\left(\{X=x\} \cap\left\{Y=y_{N}\right\}\right) \\
= & \sum_{y} P(\{X=x\} \cap\{Y=y\})=\sum_{y} P(X=x, Y=y)
\end{aligned}
$$

Marginal PMFs

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$					X	$\mathrm{P}(\mathrm{X})$
X\Y	1	2	3	4		
1	0.1	0.1	0	0.2	1	0.4
2	0.05	0.05	0.1	0	2	0.2
3	0	0.1	0.2	0.1	3	0.4

Marginal PMFs

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0.2
2	0.05	0.05	0.1	0
3	0	0.1	0.2	0.1

Y	1	2	3	4
$\mathrm{P}(\mathrm{Y})$	0.15	0.25	0.3	0.3

Example 1

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0
2	0	0.05	0.1	0.05
3	0.1	0.2	0.2	0.1

What's the value of $P(X=2, Y=3)$?
A: 0
B: 0.1
C: 0.05
D: 0.2
E: 1

Example 1

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0
2	0	0.05	0.1	0.05
3	0.1	0.2	0.2	0.1

What's the value of $P(X=2, Y=3)$?
A: 0
B: 0.1
C: 0.05
D: 0.2
E: 1
Answer is B.

Example 2

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0
2	0	0.05	0.1	0.05
3	0.1	0.2	0.2	0.1

What's the value of $P(X=3)$?
A: 0.1
B: 0.4
C: 0.05
D: 0.6
E: 1

Example 2

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0
2	0	0.05	0.1	0.05
3	0.1	0.2	0.2	0.1

What's the value of $P(X=3)$?
A: 0.1
B: 0.4
C: 0.05
D: 0.6
E: 1
Answer is D.

Conditional PMFs

- Conditional PMF of X given Y :

$$
P(X=i \mid Y=j)=P(\{X=i\} \mid\{Y=j\})
$$

- Compute $P(X \mid Y)$ using the definition of conditional probability:

$$
P(X=i \mid Y=j)=\frac{P(X=i, Y=j)}{P(Y=j)}
$$

since for any two events A, B we have $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.

- The conditional probability $P(X=i \mid Y=j)$ is the joint probability $P(X=i, Y=j)$ normalized by the marginal $P(Y=j)$.
- An equivalent definition of independence is X and Y are independent if

$$
\text { for all } i, j, \quad P(X=i \mid Y=j)=P(X=i)
$$

Conditional PMFs

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0.2
2	0.05	0.05	0.1	0
3	0	0.1	0.2	0.1
	1	2	3	4
$\mathrm{P}(\mathrm{Y})$	0.15	0.25	0.3	0.3

$P(X \mid Y)$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.66	0.4	0	0.66
2	0.33	0.2	0.33	0
3	0	0.4	0.66	0.33

Functions of Two Random Variables

Given two random variables X and Y and a function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
Z=f(X, Y)
$$

is a new random variable.
For example, pick random students and let X be their height and Y be their weight. If we define Z as the Body Mass Index (BMI) where

$$
\mathrm{BMI}=\text { weight }(\mathrm{lb}) /(\text { height }(\text { in }))^{2} \times 703 .
$$

That is,

$$
Z=f(X, Y)=Y / X^{2} \times 703
$$

Then, Z is also a random variable.

Functions of Two Random Variables

The PMF of Z can be expressed as

$$
p_{Z}(z)=\sum_{\{(x, y) \mid f(x, y)=z\}} p_{X, Y}(x, y) .
$$

For example, let us define a new random variable $Z=X \times Y$ where the joint PMF of X and Y is

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0
2	0	0.05	0.1	0.05
3	0.1	0.2	0.2	0.1

Then, the PMF of Z looks like

Z	1	2	3	4	6	8	9	12
$P(Z)$	0.1	0.1	0.1	0.05	0.3	0.05	0.2	0.1

Expectation and Variance of Two Random Variables

- The expected value and variance of Z can be respectively computed as

$$
\begin{gathered}
E[Z]=\sum_{z} z P(Z=z)=\sum_{x, y} f(x, y) P(X=x, Y=y) \\
=\sum_{x} \sum_{y} f(x, y) P(X=x, Y=y) \\
=\sum_{y} \sum_{x} f(x, y) P(X=x, Y=y)
\end{gathered}
$$

and

$$
\operatorname{var}(Z)=E\left[Z^{2}\right]-E[Z]^{2}
$$

- If X and Y are independent, for all x, y

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Linearity of Expectation

- Lemma: Given two random variables X, Y, and $Z=X+Y$ then

$$
E[Z]=E[X+Y]=E[X]+E[Y]
$$

- Lemma: If X and Y are independent then

$$
\begin{gathered}
E[X Y]=E[X] E[Y] \\
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
\end{gathered}
$$

Multiple Random Variables

- Given random variables $X_{1}, X_{2}, \ldots, X_{N}$ and a function $f: \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
Z=f\left(X_{1}, X_{2}, \ldots, X_{N}\right)
$$

is a new random variable.

- Linearity of Expectation: If $Z=\sum_{i=1}^{N} X_{i}$,

$$
E[Z]=E\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{N} E\left[X_{i}\right]
$$

- Independence: If X_{1}, \ldots, X_{N} are independent,

$$
P_{x_{1}, \cdots, x_{N}}\left(x_{i}, \cdots, x_{N}\right)=\prod_{i=1}^{N} P_{x_{i}}\left(x_{i}\right) .
$$

- Linearity of Variance: If $Z=\sum_{i=1}^{N} X_{i}$ and all X_{i} are independent,

$$
\operatorname{var}[Z]=\operatorname{var}\left(\sum_{i=1}^{N} X_{i}\right)=\sum_{i=1}^{N} \operatorname{var}\left[X_{i}\right]
$$

