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Lecture 31: Review for Final Exam



Topics

e Basic counting problems
e Probability

e Discrete random variables
o Midterm Exam #1
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Overview

e Basic counting problems

>

>

Set theory: size of, subset, disjoint sets, partitions, power set, universal
set, operations (complement, union, intersection)
Counting: permutations, k-permutations, combinations, partitions

e Probability

>

>
>
>
>
>
>

Probability axioms

Conditional probability (sequential model)
Multiplication rule

Total probability theorem

Bayes’ rule

Independence

Conditional independence

e Discrete random variables

v

>
>
>

Probability mass function (PMF)

Common discrete RVs: uniform, Bernoulli, binomial, geometric, Poisson
Expectation and Variance + their properties (e.g., functions of RVs)
Multiple RVs (joint, marginal, conditional PMF; functions of two RVs,
expectation and variance)
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Problems from MIT OCW:
Probabilistic Systems Analysis and Applied Probability

Quiz 1 Spring 2009


https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/index.htm
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/unit-i/quiz-1/MIT6_041SCF13_quiz01_s09.pdf

Problem 1

Which of the following statements is NOT true?
(a) If AC B, then P(A) < P(B).

(b) If P(B) >0, then P(A|B) > P(A).

(c) P(ANB) > P(A)+ P(B) —

(d) P(ANB°)=P(AUB) — P(B).
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Problem 1

Which of the following statements is NOT true?
(a) If AC B, then P(A) < P(B).

(b) If P(B) >0, then P(A|B) > P(A).

(c) P(ANB) > P(A)+ P(B) —

(d) P(ANB°)=P(AUB) — P(B).

Solution: (b)

A counter example: if we have two events A, B such that

P(B) > 0 and P(A) > 0, but AN B =), then P(A|B) =0, but
P(A) > P(A|B). It's easy to come up with examples like this: for
example, take any sample space with event A such that P(A) > 0,
and P(A€ > 0), it follows that P(A|A¢) =0, but P(A) > 0.
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Problem 2

We throw n identical balls into m urns at random, where each urn
is equally likely and each throw is independent of any other throw.
What is the probability that the i-th urn is empty?
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Problem 2

We throw n identical balls into m urns at random, where each urn
is equally likely and each throw is independent of any other throw.
What is the probability that the i-th urn is empty?

Solution: (a)

The probability of the jth ball going into the ith urnis 1/m.
Hence, the probability of the jth ball not going into the ith urn is
(1 —1/m). Since all throws are independent from one another, we
can multiply these probabilities: the probability of all n balls not
going into the 7ith urn, i.e. it is empty, is (1 — %)n
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Problem 3

We toss two fair coins simultaneously and independently. If the outcomes of the two
coins are the same, we win; otherwise, we lose. Let A be the event that the first coin
comes up heads, B be the event that the second coin comes up heads, and C be the
event that we win. Which of the following statements is false?

(a) Events A and B are independent.

(b) Events A and C are independent.
(c) Events A and B are not conditionally independent given C.
(d) The probability of winning is 1/2.
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Problem 3

We toss two fair coins simultaneously and independently. If the outcomes of the two
coins are the same, we win; otherwise, we lose. Let A be the event that the first coin
comes up heads, B be the event that the second coin comes up heads, and C be the
event that we win. Which of the following statements is false?

(a) Events A and B are independent.
b

(b) Events A and C are independent.
(c) Events A and B are not conditionally independent given C.
(d)

d) The probability of winning is 1/2.

Solution: (b)

The sample space in this case is Q = {(H, H),(H, T),(T,H),(T, T)}. The
probability law is a uniform distribution over this space. We have

A= {(H,H).(H, T)}, B = {(H, H).(T, H)}, and C — {(H, H), (T, T)}. By the
discrete uniform law, P(A) = P(B) = P(C) =1/2. We also have P(ANC) =1/4,
hence P(AN C) = P(A)P(C), and the two events are independent. Intuitively,
knowing that you won adds no information about whether your coin turned up heads
or not: stating this formally, we have P(A|C) = P(A).
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Problem 4

For a biased coin, the probability of “heads” is 1/3. Let h be the number of heads in
five independent coin tosses. What is the probability
P(first toss is a head|h =1 or h =5)?

1(2)4
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Problem 4

For a biased coin, the probability of “heads” is 1/3. Let h be the number of heads in
five independent coin tosses. What is the probability
P(first toss is a head|h =1 or h =5)?

1(2)4
3\3
533+ (3
16y
10+
10 +Ay
513"+ (3
1

@ 5

Solution: (c)
Let A be the event that the first toss is a head.

P(AI{H =1} or {H = 5}) = P(A,‘,?{L{ij}lj L{JH{ij}?}))
_ P((An{H=1})U(An{H =5}))
- P({H =1} U{H =5})
_PUH=1)+PAN{H=5}) _  (1/3)°+(1/3)(2/3)*
P{H=1)+P{H=5}) — (O)(1/3)2/3)+ )(1/3p
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Problem 5

A well-shuffled deck of 52 cards is dealt evenly to two players (26 cards each). What is

the probability that player 1 gets all the aces?
48
)
(a) 52,
26

4(3)
(36)
48! 52!
(c) 221 261
o 40

()

(b)
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Problem 5

A well-shuffled deck of 52 cards is dealt evenly to two players (26 cards each). What is
the probability that player 1 gets all the aces?

48)
() 2
2998)
s
b
® @
48! 521
g
4!( )
(d 22
'@

Solution: (a)
Let A be the event that player 1 gets all aces. By the discrete uniform law,

P(A) = |Al/1€|

Q| = (32) is the number of hands (26 cards from 52) player 1 can have. Additionally,
once we have given player 1 all aces, then they must be given an additional 22 cards

from the remaining 48 cards in the deck. Hence,
48 52
P(A) = (22)/(26)
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Problem 6

Suppose X, Y and Z are three independent discrete random
variables. Then, X and Y + Z are

(a) always independent
(b) sometimes independent

(c) never independent
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Problem 6

Suppose X, Y and Z are three independent discrete random
variables. Then, X and Y + Z are

(a) always independent
(b) sometimes independent

(c) never independent

Solution: (a)
Since X is independent of Y and Z, X is independent of g(Y, Z)
for any function g(Y, Z), including g(Y,Z) =Y + Z.
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Problem 7

To obtain a driving license, Mina needs to pass her driving test.
Every time Mina takes a driving test, with probability 1/2, she will
clear the test independent of her past. Mina failed her first test.
Given this, let Y be the additional number of tests Mina takes
before obtaining a license. Then,

(a) E[Y] =1
(b) E[Y] =2
(c) E[Y] =0
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Problem 7

To obtain a driving license, Mina needs to pass her driving test.
Every time Mina takes a driving test, with probability 1/2, she will
clear the test independent of her past. Mina failed her first test.
Given this, let Y be the additional number of tests Mina takes
before obtaining a license. Then,

(a) E[Y]=1
(b) E[Y]=2
(c) E[Y]=0
Solution: (b)

Y is defined as the number of additional tests Mina takes, so this
is independent of the fact that she failed her first test. Y is a
geometric RV with p = 1/2. Hence, E[Y] =1/p = 2.
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Problem 8

Let Xj, 1 < i < 4 be independent Bernoulli random variable each with mean p = 0.1.
Let X = Z?zl X;. That is, X is a Binomial random variable with parameters n = 4
and p = 0.1. Then,

(a) E[X1|X =2]=0.1
(b) E[X1|X =2]=0.5
(c) E[Xi|X =2]=0.25
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Problem 8

Let Xj, 1 < i < 4 be independent Bernoulli random variable each with mean p = 0.1.
Let X = Z?zl X;. That is, X is a Binomial random variable with parameters n = 4

and p = 0.1. Then,
(a) E[X1|X=2]=0.1
(b) E[Xi|X =2]=0.5
(c) E[Xi1|X =2]=0.25

Solution: (b)
We have P(X; = 1|X = 2) = 0.5, because

P —1x —2) = PLOX=2) _p- Qp=p? () _ o

P(X =2) GPa-p2 ()

Note that (g)p2(1 — p)? is the probability of seeing 2 heads out of 4 tosses, and
(i)p(l — p)? is the probability of seeing 1 head in the last 3 tosses.

Hence,

E[Xi X =2]=1-P(X; =1|X =2)+0- P(X; = 0|X =2) = 0.5
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Lectures’ summaries



How do we reason under uncertainty?

e Using Probability Theory

e Main idea: Assign each event a measure between 0 to 1: to
signify its likelihood

e Then proceed very carefully - or our intuitions and
observations will not match
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Set theory



Back to basics: Set theory

e A set is a collection of objects, which are the elements of the
set

o If Sis a set and x is an element of S, we write x € S.

e If x is not an element of S, we write x ¢ S. A set can have no
elements, in which case it is called the empty set, denoted by

0.

e Apple € { Orange, Apple, Pear }
Strawberry ¢ { Orange, Apple, Pear }
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Back to basics: Set theory

SRR/

e Two ways of writing a set down:

S =1{1,2,3,4,5,6}
or

S = {x|x is a possible outcome of a throw of a die}

“The collection of all elements that satisfy a certain condition

is a set”
18/115



Set theory

Size of a set S is denoted by |S|
|{ Orange, Apple, Pear }| =3

Sis a subset of T, S C T, means every element of S is also
an element of T:
Vxe S xeT

»> {Apple, Pear } C { Orange, Apple, Pear }
> { Orange, Apple, Pear } C { Orange, Apple, Pear }
» {Apple, Banana } ¢ { Orange, Apple, Pear }

IfSCTand T CS then,

S=T
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Universal Set

e (: contains all objects that could conceivably be of interest in
a particular context.

e In the context of coin tossing, Q = {H, T}.
e In the context of dice, Q = {1,2,3,4,5,6}.
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Set operations

e Complement: S€ = {x € Q|x ¢ S}
Example: Q ={1,2,3,4,5,6}; S =1{2,5}
S¢ ={1,3,4,6)

Note that, Q¢ =0

e The union of two sets S and T is the set of all elements that
belong to S or T (or both), and is denoted by SU T.

SUT={x|xeSorxeT}

e The intersection of two sets S and T is the set of all elements
that belong to both S and T , and is denoted by SN T.

SNT={x|xeSandxe T}
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Power Set

By default: ) € S C Q.
Power Set: Set of all subsets

S =1{1,2,3}
2% = {0,{1},{2}, {3}, {1,2},{1,3},{2.3}.{1,2,3}}
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Disjoint Set
Sand T are disjoint if SNT =)

51,5,...,5, forms a partition of S if 5; and S; are disjoint for
any i #jand SUSU---US, =S.

23 /115



Venn Diagram

(d) (e)

Courtesy: Textbook
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Venn Diagram - Partitions

e In(e), S, T, and U do not form partitions of W. However,

S, T, U, and (SU T UU)¢ form partitions of W.
e In(f), S, T, and U form partitions of W.

Similarly,
e In (a),(b) and (c), S and T do not form partitions of W.
However, (SU T) and (SU T)¢ form partitions of W.

e In(d), T and T€NS form partitions of S. Furthermore, S
and S€ form partitions of W.

25 /115



Set Algebra

Using the above definitions, we can show that:

Intersection Commutativity SN T =TnNS

Union Commutativity SUT =T US

Intersection Associativity SN(TNU)=(SNT)NU
Union Associativity SU(TUU)=(SUT)UU
Intersection Distributivity SN(TUU) = (SN T)U (SN U)
Union Distributivity SU(TNU)=(SUT)N(SUU)

26 /115



Summary: Sets

A set is a collection of objects, which are the elements of the
set

x €S, x¢ S, empty set ), number of elements in a set |S]
Subset: SC T
Universal set Q, set complement: 5S¢ = {x € Q|x ¢ S}

Set union SU T = {x|x € S or x € T}, intersection
SNT={x|xe€Sandxe T}

Power Set: Set of all subsets
Disjoint sets SN T =0

Partition of a set: S; and S; are disjoint for any i/ # j and
SiUSU---US, =S5
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Model of Probability



Model of Probability

A probabilistic model is a mathematical description of an uncertain
situation. Two fundamental elements of a probabilistic model are

e Sample Space Q: all possible outcomes of an experiment

e Probability Law:
ACQ P(A),
where A is an event (a set of possible outcomes) and

P(A) is a non-negative number presenting the likelihood of
observing the event A.

Probabilistic model involves an experiment, which produces an event
from the sample space.

Sample Space

e I

/ &

Event {X=:l'}
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Probability Laws

e Probability represents likelihood of any outcomes or of any set
of possible outcomes.

e The probability law assigns to every event A, a number P(A),
call the probability of A.
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Axioms of Probability

e Nonnegativity:
P(A)>0

e Additivity: For any two disjoint sets A and B,
P(AUB) = P(A)+ P(B)
Holds for infinitely many disjoints events Aj, As, As, ...
P(UIA) = > P(A).

¢ Normalization:
P(Q2) =1
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Discrete Probability Models

If Q consists of a finite number of possible outcomes, we are
dealing with discrete probability models.
For example,

e Coin Toss
e Dice Rolling

For discrete probabilistic models, the probability law is specified by
the probabilities of the events that consists of a single element
(that are disjoint by nature).

AI{Sl,SQ,...,Sn} cQ

P(Q) = P({s1,52,---,5n}) = P(s1) + P(s2) + ... + P(sn)

32/115



Uniform Discrete Model

If Q is finite and all possible outcomes are equally likely, it is a
uniform discrete model. Then, the probability of each element of

Q has the probability of
1

€|
More generally, VA C Q
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Uniform Discrete Model - Example

Throwing a fair die is an example of a uniform discrete model.
Q=1{1,2,3,4,5,6} Uniform model:

PUD = g = 5

fori=1,2,3,4,5,6.
A: even number shows up

A={2,4,6}
Al =3
_JA 3 1
P(A) = Q6 2
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Conditional Probability



Conditional Probabilities

Conditional probability provides us with a way to reason about the
outcome of an experiment based on partial information or
observations.

Consider rolling a fair die. What is the probability that the outcome
is 6 given that we know that the outcome is an even number.

e Suppose that you rolled a die while blindfolding yourself. Your
friend next to you told you that the number is even. Does
that change your probability space?

We can express this conditional probability using P(A|B):
conditional probability of A given B, where P(B) > 0.
In the above example,

e A= { The outcome is 6 }
e B = { The outcome is an even number }
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Conditional Probabilities

e A new probability space to be defined.
e The universe (sample space) has been changed to B

e The probability has now to be normalized by P(B)

Definition of conditional probability,

P(AN B) B |AN B

PAR = "pE T B

e If A and B are disjoint, i.e., AN B = (), then P(A|B) = 0.

Why?

» In the case of disjoint Aand B, ANB = 0.
> Which means, P(AN B) = 0. So P(A|B) = 0.
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New probability space P(-|B)

Verify that the axioms of probability are satisfied!

¢ Nonnegativity: P(A|B) = PI(DA(E“)B) > 0 since P(ANB) >0

e Additivity: For any two disjoint sets A and C, show that
P(AU C|B) = P(A|B) + P(C|B).

P((AUC)n B)
P(B)
_P((AnB)uU(CNnB))) PANB)+P(CNB)

P(B) - P(B)
= P(A|B) + P(C|B).

P(AUC|B) =

e Normalization: New sample space is B.

_P(BNB) P(B)
PR "pE) ~re) !
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Example

Let us have two unfair coin tosses where the joint probability has
P({HH})=1/2

P({HT})=1/4

P({TH})=1/8

P({TT})=1/8
What is the probability that we have exactly one H given that the
second toss shows H?

Define A and B first.

_P(AnB) _ P{TH})  1/8 1
PAIB) = =pBy = P(HA. THY) ~ 1/2+1/8 5
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Another Exercise

Example: Throw of two dice. Each of the 36 outcomes are equally
likely

e A = max of two dice is less than 5
e B = min of the two dice is greater than 1
What is P(A|B)?
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Another Exercise

Example: Throw of two dice. Each of the 36 outcomes are equally
likely

e A = max of two dice is less than 5
e B = min of the two dice is greater than 1
What is P(A|B)?

° P(A)—%
B) =
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Sequential Model for Conditional Probabilities

Many experiments have a sequential characteristic: the future
outcomes depending on the past.

For example, consider an example involving three coin tosses.
e The first toss is unbiased (fair): P(H) = 0.5 and P(T) = 0.5.

e Based on the outcome of the first toss, the second toss is
biased towards that outcome by 60%.

» For example, if the outcome of the first toss is H, then the
second toss has P(H) = 0.6 and P(T) = 0.4.

e Based on the outcome of the second toss, the third toss is
biased towards that outcome by 70%.

Let us draw a tree-based sequential description.
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Sequential Model for Conditional Probabilities

How to setup a tree-based sequential description and use it?

1. Leaves represent events of interest, which occur in a
sequential manner

2. Branches represent the conditional probability

3. The probability of the end-leaf can be computed by
multiplying conditional probabilities from the root.
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Sequential Model for Conditional Probabilities

First Toss Second Toss Third Toss

P(H,H,H,)=0.21
P(H,|H,H

P(H,H,T;)=0.09
P(T;|H,H,)=0.3

P(H, | H,)=6"
P(H,T,H,)=0.06

P(T,IH,)=04 P(H,T,T5)=0.14

P(T;|T,H,)=0.7

TH P(H31H,T,)=0.7 P(T,H,H,)=0.14
P(H,|T,)=0.4
W P(T,H,T,)=0.06

P(H;|T,T;)=0.3

Root

P(T,)=0.5

P(T,T,H,)=0.09

P(T3|T,T,)=0.7 P(T,T,T,)=0.21
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Multiplication Rule

e We learned conditional probability

P(AN B)

P(A|B) = W7

which can be re-written as
P(AN B) = P(B)P(A|B) = P(A)(B|A)
e Now, what about

P(AnNBNC)=?
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Multiplication Rule

e We learned conditional probability

PuaE) = T

which can be re-written as

P(AN B) = P(B)P(A|B) = P(A)(B|A)

e Now, what about
P(ANBNC)=P((ANnB)NC)

(DN C), where D = (AN B)
(D)P(C|D)
(AN
(

AN B)P(C|AN B)

P
P
P
P(A)P(B|A)P(C|AN B)

These are other equivalent results for P(AN BN C).
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Multiplication Rule

In general,

P(N_A) = P(ALNAN...Ap)
= P(A)P (Ag\Al) (A3]A1 N Ay) ... P(A| NIZ1 A
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Total Probability Theorem
and Bayes’ Rule



Total Probability Theorem

o Let A1, Ay, ..., A, form a partition of Q and P(A;) >0

e Then, for any event B, we have

P(B):P(AmB)+P(A2mB)+---+P(A N B)
= P(A1)P(B|A1) + P(A2)P(B|A2) + - - + P(An)P(B|A,).
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Bayes' Rule

Let A, Az, ..., A, partition Q and P(A;) > 0. For any B such
that P(B) > 0,
_ P(A)P(BJA)
P(A:)P(BJA)
P(A1)P(B|A1) + P(A2)P(B|A2) + - + P(An) P(B|An)
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Independence



Independence

Consider flipping a fair coin twice in a row.

If we know the coin is fair, does knowing the result of the first
flip give us any information about the result of the second flip?
What's the probability the coin comes up heads on the second
flip?

What's the probability the coin comes up heads on the second
flip given that it came up heads on the first flip?
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Probabilistic Independence

e Intuitively, when knowing that one event occurred doesn't
change the probability that another event occurred or will
occur, we say that the two events are probabilistically
independent.

e We say that two events A and B are independent if and only
if (iff)

P(ANB) = P(A)P(B) .

and this implies that P(A|B) = P(A) and P(B|A) = P(B).
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2nd Roll

Rolling Two Dice

e Question: Suppose you roll two fair four sided dice. Are the
events A ="maximum is less than 3" and B="sum is greater
than 3" independent?

10 © © © 10 ©@ © © 4
30 @ © @ = ‘9 @ @ @ = 3
e~ e~
20 ©@ © O g 2 @ O = 2@
(o] (o]
10 ©@ @ @ ! @ o '®e @
1 2 3 4 1 2 3 4 1 2 3 4
1st Roll 1st Roll Ist Roll
Sample Space |Al =4 |B] =13

e Answer 2: Formally,

13

P(ANB) = = | P(A):% and P(B) =1 .

16

Since % # % : %, the events are not independent.
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An Event and Its Complement

e Question: Are A and A€ independent if 0 < P(A) < 17

e Answer 1: Intuitively, no. If you know A happens, then you
know AC does not happen.

e Answer 2: Formally, P(ANA®) = P() = 0. If
0 < P(A) < 1, then

P(A)P(A) #0 .
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Independence of Three Events

Three events A, B, and C are independent iff:

P(ANn B) = P(A)P(B)

P(AN €) = P(A) P(C)
P(BN C) = P(B) P(C)
P(ANBNC) = P(A)P(B)P(C)

First three conditions imply that any two events are
independent (known as pairwise independence)

Pairwise independence does not imply the independence of all
events.

Suppose we have a finite collection of events Aj, As, ..., A,.
These events are said to be independent iff

P (NiesAi) H P(A;), for every subset S of {1,2,..., n}
ieS
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Conditional Independence

e A and B are conditionally independent given C iff
P(ANB|C)=P(A|C)P(B| C)

e This is equivalent to P(A| BN C) = P(A| C), assuming that
P(B| C) > 0.
» |If C is given, additional information of knowing B has occurred
does not change the conditional probability of A.
e This is equivalent to P(B | AN C) = P(B | C), assuming that
P(A| C) > 0.
» |If C is given, additional information of knowing A has occurred
does not change the conditional probability of B.
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Counting



Counting and Discrete Probability Laws

e If Q is finite and all outcomes are equally likely, then

P(A) = “QA"

e The calculation of probabilities often involve counting the
number of outcomes in various events.

e Sometimes it's challenging to compute |A| and || and they
are too large work out by hand. ..
We covered different counting methods:
e Permutations
e k-Permutations

Combinations

Partitions
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The Counting Principle

e Consider a sequential process with s stages. At each stage /,
there are n; possible results. How many outcomes does the
process have?

Leaves

ny ny ny ng
Choices Choices Choices Choices
! ] | -l |

I | I 1
Stage 1 Stage 2 Stage 3 Stage 4

e How many possible outcomes are possible from a sequence of
s stages?
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The Counting Principle

e Consider a sequential process with s stages. At each stage /,
there are n; possible results. How many outcomes does the
process have?

Leaves

ny ny ny ng
Choices Choices Choices Choices
! ] | -l |

I | I 1
Stage 1 Stage 2 Stage 3 Stage 4

e How many possible outcomes are possible from a sequence of
s stages?

s
n1><n2><~~><n5:Hn,-.
i=1
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Counting Permutations

Let S be a set of n objects.

Consider an n-stage experiment where at each stage we
choose one object without replacement.

» We pick objects until there's no more objects to pick.

This process produces an ordering or permutation of the n
objects.

» For example, if n =3 and S = {a, b, ¢}, one ordering can be
bac.

This is an n stage process. We have sy = n, s, =n—1,...,
s, = 1.

By the counting principle, the number of permutations is
n(n—1)(n—2)---1=n!

For permutations, order matters, i.e., abc # bac.
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Counting k-Permutations

Let S be a set of n objects.

Consider a k-stage experiment where k < n. At each stage we
choose one object without replacement.
» We pick only k objects.

This process produces an ordering of the k objects, which is
also called a k-permutation.

> For example, if n =3,k =2, and S = {a, b, c}, one possible
2-permutation is ba and another is ab.

This is a k-stage process where s =n, s =n—1,...,
Sk =n—k+1.
By the counting principle, the number of permutations is

n(n—l)(n—2)---(n—k+1):m

Order also matters for k-permutations.
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Counting Combinations

Let S be a set of n objects. How many subsets of size k are
there?

The number of k-permutations is n!/(n — k)! but this over
counts the number of subsets, e.g., ab and ba are different
2-permutations of {a, b, c}, but the same subset {a, b}.

» Order does NOT matters for combinations.

k! different k-permutations belong to the same subset of k
objects, so the number of "k-combinations” is

= n!
KU~ (n—k)Ik!

which is denoted (), pronounced as “n choose k”.
Note that () =1
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Counting Partitions

A combination divides items into one group of k and one
group of n — k. Thus, a combination can be viewed as a
partition of the set in two.

Consider an experiment where we divide n objects into /¢
groups with sizes ny, np, ..., ng such that n = Zf;l n;.
How many partitions are there?

There are (:1) ways to choose the objects for the first

partition. This leaves n — n; objects. There are (";2"1) ways
to choose objects for the second partition. There are
("_"1_"2n;"'_"f‘1) ways to choose the objects for the last

group.
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Counting Partitions

e Using the counting principle, the number of partitions is thus:

n n—m n—ny—np—...—Ny_1
n no ny

B n! (n—n)! (n—ny—n—...—np_q)!
~ m!(n—ny)! m!(n— ng— np)! nel(n—ny — o — ... — ny)!
e Notethat (n—ng —n—...—ny)! =0l =1.

e Canceling terms yields the final result:

n!
n1! < 'ng!
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Summary of Counting Problems

. Order
Structure Description Formula
Matters
: Number of ways to order n ob-
Permutation o way Yes n!
jects
Number of ways to form a se-
. uence of size k using k dif-
k-Permutation | o . & Yes (nf!k).
ferent objects from a set of n :
objects
Number of ways to form a set
Combination of size k using k different ob- | No k!(:lk)!
jects from a set of n objects
Number of ways to partition n
Partition objects into £ groups of size | No nl!f%nél
ny,...,ny
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The Binomial Law

If we toss n coins, what's the probability of seeing k heads,
denoted as P,(k)? (without exhaustively enumerating all
sequences?)

Any single sequence of length n with k heads has probability
p(1—p)" k.

But how many different sequences of length n contain k

heads?
n\ n!
<k) - kl(n— k)!

where (8) =1.
Thus,
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The Binomial Law

e The following equation is often called the binomial
probabilities.

n

pali) = ()1 o)

where (7) is referred to as binomial coefficient.
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Discrete random variables
and
Probability mass functions



Random Variables Give An Easy Way to Specify
Events

e If we have a function X : Q — R, we can use it to construct a
different event for each value of x € R:

{X =x} = {o|o € 2 and X(0) = x}

e In the dice example, the event {X = x} is the set of outcomes
o € ( that are mapped to the the same value x by the
function X.

For example,

{X = 2} = {(172)7 (2a 1)7 (272)}

{X = 3} = {(13 3)’ (2a 3)7 (37 3)(37 1)? (3’ 2)}
{X=1}={(1,1)}
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Discrete Random Variables and Probability

e A random variable is called discrete if its input (sample
space) is either finite or countably infinite.

e We can compute the probability of an event {X = x} by
decomposing it into atomic events and using the probability
rule:

P(X = x) = px(x) = P({o]o € Q and X(o0) = x})

e Probability law: A function px(x) that maps event to a
number between 0 and 1 that satisfies the probability axioms:

1. Nonnegativity: px(x) > 0,Vx.
2. Normalization: )~ px(x) = 1.
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Example: Maximum of Dice Rolls

e For example, in the event of {X = 2} for the dice rolling
example where X(r1, ) = max(r, )

P(X - 2) - P({(172)7(271)7(272)})
P((l, 2)) + P((2, 1)) + P((2, 2)) = 3/16

e We can work out the probability for all possible values of x:

4
P(X=k)

3 7

5 16
2 3 16

A 16
1 i |
1 2 | 3 4 ‘ 2 3 4 k

Sample Space:
Pairs of Rolls
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In general. ..

e The probability associated with the event {X = x} for each
element x € R of a discrete random variable X is referred to
as the probability mass function or PMF of the random
variable.

e The PMF is denoted by P(X = x) or px(x).

rx(T)

Sample Space
Q

/

Event {X::r}

» The x-axis represents all possible outcomes of the event
» The y-axis represents the associated probabilities
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Common Discrete Random Variables



Discrete Uniform Random Variables

A discrete uniform random variable X with range [a, b] takes
on any integer value between (and including) a and b with the
same probability

For example, the random variable that maps a fair six-sided
dice roll to the number that comes up is a uniform random
variable with a=1, b=6 and P(X = k) = 1/6 for
k=1,..,6.

The PMF of a discrete uniform random variable X is

P(X = k)= fork=a,...,b

b—a+1

Used to model probabilistic situations where each of the
values a, ..., b are equally likely.
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Bernoulli Random Variables

Suppose we have an experiment with two outcomes H and T.
H happens with probability p and T with probability 1 — p,
O<p<l

We define a random variable X such that X(H) =1 and
X(T)=0.

This is called a Bernoulli random variable X that takes the
two values 0 or 1.

Its PMF looks like

1—p ifk=0
P(X:k):{p k=0

You can also define X(H) =0 and X(T) = 1, with
PX=1)=p'=1-p
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Bernoulli Random Variables: Examples

Whether a coin lands heads or tails.

Whether a server is online or offline.

Whether an email is spam or not.

Whether a pixel in a black and white image is black or white.

Whether a patient has a disease or not.
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Binomial Random Variable

A binomial random variable is the combination of independent
and identically distributed Bernoulli random variables

Suppose we flip n coins independently, where each coin has
probability p of being heads

The set of outcomes is:
Q={(TTT...TT),(TTT ... TH),...,(HHH ... HH)}
Define a random variable X where for each o € Q,
X(0) = "“the number of heads in outcome 0"

We're already shown that P(X = k) = (})p*(1 — p)" X
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Binomial Random Variables: Examples

The number of heads in N coin tosses.

The number of servers that fail in a cluster of N servers.
The number of games a football team wins in a season of N
games (assuming i.i.d.).

The number of True/False questions you get correct if you
guess each of N questions.
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Geometric Random Variables

Suppose we flip a biased coin repeatedly until it lands heads.
Let X be the number of tosses needed for a head to come up
for the first time.

The PMF of a geometric random variable X is
PX=k=1-p)kt.p fork=1,23,...

Used to model the number of repeated independent trials up
to (and including) the first “successful” trial.

Example: the number of patients we test before the first one
we find who has a given disease.
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Geometric Random Variables: Example

e Products made by a machine have a 3% defective rate.

e What is the probability that the first defect occurs in the fifth
item inspected?

P(X=k)=(1-p) 1 p=(1-0.03)°"1.0.03 =0.0265...
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Poisson Random Variables

A Poisson random variable X is a random variable that has
the following PMF

)\k
P(X:k):e—AF for k=0,1,2,...
The Poisson distribution is one of the most widely used

probability distributions.
Built based on Taylor series: ¥ =%"}7 ’;—k,

Think about Poisson RV as a framework that provides
approximation of a real-life random variable as a function of .
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Poisson Random Variables

e Think about Poisson RV as a framework that provides
approximation of different PMFs as a function of \.

A=05 A=2
07 03r
06 azsh
0.5
0.2F
0.4
P(X=k) 015
0.3
0.1
0.2
0.1 0.05
0 0
0 2 4 6 8 0 2 4 6 8
K k
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Poisson Random Variables

e |t is generally used in scenarios where we are counting the
occurrences of certain events within an interval of time or
Sspace.

» The number of typos in a book with n words.

» The number of cars that crash in a city on a given day.

» The number of phone calls arriving at a call center per minute
etc.

e )\ represents the expected number of events (we will learn
more about this).

» The average number of typos in a book.
» The average number of car crash per day.
» The average number of phone calls per minute.
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Poisson Random Variables: Example

e Suppose that the number of phone calls arriving at a call
center per minute can be modeled by a discrete Poisson PMF.

e In average, the call center receives 10 calls.

e What is the probability that the center will receive 5 calls?

_y A
PX(k) = e A F
10°
Px(k) = e~ 10 = = 0.0378...
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Poisson Random Variables

e A Poisson PMF with A\ = np is a good approximation for a

binomial PMF with very small p and very large n if k < n

> A bionomial RV X is the number of heads (k) in the n-toss
sequence, where the coin comes up a head with probability p.

e Example: n =100 and p = 0.01 for the binomial r.v. where as
A = np for the Poisson r.v.

Possion Distribution with A = np Binomial Distribution

0.3 0.3

p(x=k) 02

0.1 0.1

0 0
0 2 4 6 0 2 4 6

k k

e Poisson PMF provides mucb simpler models and calculations:
(1)1 = p)"kus. e 27
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Summary: Discrete Random Variables

Uniform: For k=a,..., b:

1
PX=k)= ——
( ) b—a+1
Bernoulli: For k =0 or 1:
_N_J1=p ifk=0
P(X_k)_{p if k=1

Binomial: For k=0,..., N
N _
P(X = k) = <k> pr—pN*

Geometric: For k =1,2,3,..., P(X =k) = (1 - p)k1.p
Poisson: P(X = k) = e for k =0,1,2,...
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Expectation and Variance



Expected Value

For a random variable X, the expected value is defined to be:

EX] =) xP(X =x)

x€R
i.e., the probability-weighted average of the possible values of
X.
E[X] is also called the expectation or mean of X.
Why do we care to know about the expected value?

Given a certain PMF, what is the "average” outcome that |
am expecting to have?

For example, if | bet the same amount of money on roulette
and play it for a long-term period, how much do | expect to
make?
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Expected Value: Question

e Expectation:
EX] =Y kP(X =k)
keR
e If X maps to {1,2,6} and
PX=1)=1/3 , P(X=2)=1/2 , P(X=6)=1/6

then E[X]=1-3+2-3+6-¢=233...
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Expectations of Common Random Variables
Uniform on {a,a+1,...,b}: E[X] = 2f2

Bernoulli: E[X]=(1—p)-0+p-1=p

Binomial: E[X] =] _ k- (})p*(1—p)"*=np

Geometric: E[X] =32 k- (1—p)ip=

T =

Poisson: E[X] = zozok.%)\k —\
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Properties of Expectation

e Linearity of Expectation: If a and b are any real values,
then the expectation of aX + b is:

ElaX + bl =a-E[X]+ b

e Expectation of Expectation: Applying the expectation
operator more than once has no effect. E[E[X]] = E[X] since
E[X] is already a constant.
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Variance

e Definition: Variance measures how far we expect a random
variable to be from its average:

var(X) = E[(X — E[X])?] = 3 (k - E[X])?- P(X = k)
k

e An equivalent definition is
var(X) = E[X?] — E[X]?

e Definition: we generally define the nth moment of X as
E[X"], the expected value of the random variable X".

92 /115



Variance of Common Random Variables
Bernoulli: var[X] = p(1 — p)
Binomial: var[X] = np(1 — p)
Geometric: var[X] = lp_—zp
(b—a+1)>—1

Uniform: var[X] = >

Poisson: var[X] = A
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Standard Deviation

The term standard deviation simply refers to the positive
square root of the variance, which always exists and is also

positive:
std(X) = /var(X)
The standard deviation is also a measure of dispersion around

the mean.

One reason that people like to report standard deviations
instead of variances is that the units are the same as X.
var(X) = E[(X — E[X])?] vs. std(X) = \/E[(X — E[X])?]
Example 1: If X is height in feet, then var(X) has units in
square feet while std(X) again has units in feet.
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Functions of Random Variables

If X is a random variable and f : R — R then
Y = f(X)
is also a random variable with PMF:

P(Y = k)= P(f(X) =k) = P(o)
0€Q with £(X(0))=k

Example, let X represent an outcome from a 6 sided fair die

where
P(X =1i)=1/6,Vi.

Suppose that you will receive money that is the square of the
outcome, and we define a r.v. Y as the amount of money.

This function Y = f(X) can be expressed as

Y = X?
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Functions of Random Variables

e Note that Y is also a random variable, whose PMF looks like.

0.2 T T T T T T 0.2

0.1

P(X)

0.05
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Functions of Random Variables
e Expectation of Y = f(X):

E[Y]=) yP(Y =y) =) yP(X=f"(y))
y y

= Ff(x)P(X =x)
e For the previous example,
EX]=1x1/6+2x1/6+---+6x1/6=235

E[Y]=1>%x1/6+22x1/6+---+6>x1/6=$15.2
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Functions of Random Variables

e Variance of Y:

varlY] = E[(Y — EIYIP = Y (k= E[Y]?-P(Y = k)
ke{1,4,...,36}
= Y (k- EIYI?-P(X = FH(K))
ke{1,4,...36}

= (1— E[Y])?P(X = V1) + (4 — E[Y])*P(X = V4) + - --
e For the previous example,
E[X]=1x1/64+2x1/6+---+6x1/6=35
E[Y]=12x1/64+22x1/6+4---4+6%x1/6=$152
e Then, the variance for Y is
var[Y] = (12 —15.2)? x 1/6 + (22 = 15.2)2 x 1/6 + - - -
+(6% —15.2)2 x 1/6 = 149.1
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Example: Linear function

o If Y =aX + b, then E[Y] = aE[X] + b and
var[Y] = avar[X]

var[Y] = var[aX + b]
= (ak+ b— E[aX + b])*P(X = k)
k
= “(ak+ b— aE[X] — b)?P(X = k)
k
= (ak — aE[X])*P(X = k)
k

=a>) (k- E[X])’P(X = k)
k
= a*var[X].
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Multiple Random Variables

Consider two random variables, X and Y associated with the
same experiment.

For x,y € R, we can define events of the form
{(X=x Y=y} ={X=x}n{Y =y}

The probabilities of these events give the joint PMF of X
and Y:

px,y(xy) =P(X=x,Y =y)=P(X =xand Y =y) = P({X = x}n{Y = y})

Useful for describing multiple properties over the outcome
space of a single experiment, e.g., pick a random student and
let X be their height and Y be their weight.
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Tabular Representation of Joint PMFs

P(XY)
X\Y [Y=1]Y=2]Y=3[Y=4
X=1] o1 0.1 0 0.2
X=2] 005 | 005 | 0.1 0
X=3] 0 0.1 0.2 0.1

oeg, PX=2Y=3)=2P(X=3Y=1)=1 ..
e Given the joint PMF, can we compute P(X = x) and
P(Y = y)?

px(x)=P(X=x)=ZP(X=x,Y=y)

py(y) =P(Y =y) = ZP =x,Y=y)

e If we start with the joint PMF of X and Y, we say px(x) is
the marginal PMF of X and py(y) is the marginal PMF of
Y.
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Computing Marginals from the Joint Distribution

e Suppose Y takes the values y1, y,..., yn, then

{Y:yl}){YZyZ}"",{Y:)/N}

form partitions of Qy.
e Hence, {X = x} can be partitioned into

X=x}n{Y=n}{X=x}n{Y =y}... {X=x}n{Y =y}
e Therefore,

P(X = x) P({X =x})
PAX=x}n{Y =y1}) + P{X =x} n{Y =y»})
L PEX =xyn{Y =yn})
SPU{X=x}n{Y=y})=> P(X=xY=y)
y

y
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Marginal PMFs

XWW[ 1 ] 2 [3]4] [X][PX

1 01|01 | 0|02 1| 04
2 0.05]005|01] O 2| 0.2
3 0 0.1 10201 3] 04
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Marginal PMFs
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Example 1

1 01| 01 0 0
2 0 |005|01]0.05
3 01| 02 02| 01

What's the value of P(X =2, Y = 3)?
0

: 0.1

: 0.05

0 0.2

1

mO W >

107 /115



Example 1

1 01| 01 0 0
2 0 |005|01]0.05
3 01| 02 02| 01

What's the value of P(X =2, Y = 3)?
A: 0

B: 0.1

C: 0.05

D: 0.2

E: 1

Answer is B.
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Example 2

2 0 |005|01]0.05
3 01| 02 02| 01

What's the value of P(X = 3)?
0.1

0.4

0.05

0.6

1

moUow?>»
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Example 2

P(X.Y)
X\Y[[ 1] 2 3] 4
1 [Jo1] o1 0

2 0 |005|01]0.05
3 01| 02 02| 01

What's the value of P(X = 3)?
A: 0.1

B: 0.4

C: 0.05

D: 0.6

E: 1

Answer is D.
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Conditional PMFs

Conditional PMF of X given Y:
P(X =ilY =j)=P{AX =i}{Y =J}) .

Compute P(X]Y) using the definition of conditional
probability:

) ~ PX=iY=}))
P(X=ilY=j)= -
( | ) P(Y =)
since for any two events A, B we have P(A|B) = Pf;(\gf).

The conditional probability P(X = i|Y = j) is the joint

probability P(X =i, Y = j) normalized by the marginal

P(Y =)).

An equivalent definition of independence is X and Y are
independent if

forall i,j, P(X=i]Y =j)=P(X =1i)

109 /115



Conditional PMFs

110/115



Functions of Two Random Variables

Given two random variables X and Y and a function
f:RxR—=R,
Z=1f(X,Y)

is a new random variable.

For example, pick random students and let X be their height and
Y be their weight. If we define Z as the Body Mass Index (BMI)
where

BMI = weight (Ib)/(height (in))? x 703.

That is,
Z=1f(X,Y)=Y/X?x703.

Then, Z is also a random variable.
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Functions of Two Random Variables

The PMF of Z can be expressed as

pz(z) =

>

{)If(x,y)=2}

For example, let us define a new random variable Z =X x Y

where the joint PMF of X and Y is

px,y (X, y).

P(X)Y)
X\'Y[ 1 [ 2 [3] 4
1 0.1] 0.1 0
2 0O [0.05|0.1]0.05
3 01] 02 |02] 0.1
Then, the PMF of Z looks like
z [[1]2]3] 4 ]6] 8 [9]12]

; P(Z) ]01]01[01]0.05]03][0.05]02]0.1|
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Expectation and Variance of Two Random Variables

e The expected value and variance of Z can be respectively
computed as

EZ]=) 2P(Z=2)=) f(x,y)P(X=x,Y =y)
:sz(x)y)’p(x:xvyzy)

:ZZf(X,y)P(X:X,Y:y)

and
var(Z) = E[Z%] - E[Z]>.

e If X and Y are independent, for all x,y
P(X=x,Y=y)=P(X=x)P(Y =y).
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Linearity of Expectation

e Lemma: Given two random variables X, Y,and Z=X+Y
then
E[Z] = E[X + Y] = E[X] + E[Y]

e Lemma: If X and Y are independent then
E[XY] = E[X]E]Y]

var(X +Y) = var(X) + var(Y)
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Multiple Random Variables

Given random variables Xi, Xz, ..., Xy and a function
fF:RxRx...xR—=R,

Z=f(X1, X, ..., Xn)

is a new random variable.
Linearity of Expectation: If Z ="V X;,

N N
E[Z]=E > Xi| =Y E[X]

i=1 i=1

Independence: If Xi,..., Xy are independent,

N
le’.., 7XN(X"7 s 7X[\/) = H PX,.(X,') .
i=1

Linearity of Variance: If Z = ZIN:I Xi and all X; are independent,
N N
var[Z] = var (Z X,-> = Z var[Xi]
i=1 i=1
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