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Lecture 31: Review for Final Exam



Topics

• Basic counting problems

• Probability

• Discrete random variables

• Midterm Exam #1

• Continuous random variables

• Central limit theorem

• Probabilistic reasoning

• Game theory

• Midterm Exam #2

• Markov chains

• Bayesian network

• Final Exam
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Overview

• Basic counting problems
I Set theory: size of, subset, disjoint sets, partitions, power set, universal

set, operations (complement, union, intersection)
I Counting: permutations, k-permutations, combinations, partitions

• Probability
I Probability axioms
I Conditional probability (sequential model)
I Multiplication rule
I Total probability theorem
I Bayes’ rule
I Independence
I Conditional independence

• Discrete random variables
I Probability mass function (PMF)
I Common discrete RVs: uniform, Bernoulli, binomial, geometric, Poisson
I Expectation and Variance + their properties (e.g., functions of RVs)
I Multiple RVs (joint, marginal, conditional PMF; functions of two RVs,

expectation and variance)
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Problems from MIT OCW:
Probabilistic Systems Analysis and Applied Probability

Quiz 1 Spring 2009

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/index.htm
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/unit-i/quiz-1/MIT6_041SCF13_quiz01_s09.pdf


Problem 1

Which of the following statements is NOT true?

(a) If A ⊂ B, then P(A) ≤ P(B).

(b) If P(B) > 0, then P(A|B) ≥ P(A).

(c) P(A ∩ B) ≥ P(A) + P(B)− 1.

(d) P(A ∩ Bc) = P(A ∪ B)− P(B).

Solution: (b)
A counter example: if we have two events A, B such that
P(B) > 0 and P(A) > 0, but A ∩ B = ∅, then P(A|B) = 0, but
P(A) > P(A|B). It’s easy to come up with examples like this: for
example, take any sample space with event A such that P(A) > 0,
and P(Ac > 0), it follows that P(A|Ac) = 0, but P(A) > 0.
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Problem 2

We throw n identical balls into m urns at random, where each urn
is equally likely and each throw is independent of any other throw.
What is the probability that the i-th urn is empty?

(a)
(
1− 1

m

)n
(b)

(
1− 1

n

)m
(c)

(m
n

) (
1− 1

n

)m
(d)

(n
m

) (
1
m

)n

Solution: (a)
The probability of the jth ball going into the ith urn is 1/m.
Hence, the probability of the jth ball not going into the ith urn is
(1− 1/m). Since all throws are independent from one another, we
can multiply these probabilities: the probability of all n balls not
going into the ith urn, i.e. it is empty, is

(
1− 1

m

)n
.
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Problem 3

We toss two fair coins simultaneously and independently. If the outcomes of the two
coins are the same, we win; otherwise, we lose. Let A be the event that the first coin
comes up heads, B be the event that the second coin comes up heads, and C be the
event that we win. Which of the following statements is false?

(a) Events A and B are independent.

(b) Events A and C are independent.

(c) Events A and B are not conditionally independent given C .

(d) The probability of winning is 1/2.

Solution: (b)
The sample space in this case is Ω = {(H,H), (H,T ), (T ,H), (T ,T )}. The
probability law is a uniform distribution over this space. We have
A = {(H,H), (H,T )}, B = {(H,H), (T ,H)}, and C = {(H,H), (T ,T )}. By the
discrete uniform law, P(A) = P(B) = P(C) = 1/2. We also have P(A ∩ C) = 1/4,
hence P(A ∩ C) = P(A)P(C), and the two events are independent. Intuitively,
knowing that you won adds no information about whether your coin turned up heads
or not: stating this formally, we have P(A|C) = P(A).
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Problem 4

For a biased coin, the probability of “heads” is 1/3. Let h be the number of heads in
five independent coin tosses. What is the probability
P(first toss is a head|h = 1 or h = 5)?

(a)
1
3

( 2
3

)4

5 1
3

( 2
3

)4 + ( 1
3

)5

(b)
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)4 + ( 1
3

)5

(d)
1

5

Solution: (c)
Let A be the event that the first toss is a head.

P(A|{H = 1} or {H = 5}) =
P(A ∩ ({H = 1} ∪ {H = 5}))

P({H = 1} ∪ {H = 5})

=
P((A ∩ {H = 1}) ∪ (A ∩ {H = 5}))

P({H = 1} ∪ {H = 5})

=
P({H = 1}) + P(A ∩ {H = 5})
P({H = 1}) + P({H = 5})

=
(1/3)5 + (1/3)(2/3)4(5

1

)
(1/3)(2/3)4 +

(5
5

)
(1/3)5
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Problem 5

A well-shuffled deck of 52 cards is dealt evenly to two players (26 cards each). What is
the probability that player 1 gets all the aces?

(a)

(48
22

)(52
26

)
(b)

4
(48

22

)(52
26

)
(c)

48!

22!

52!

26!

(d)
4!
(48

22

)(52
26

)

Solution: (a)
Let A be the event that player 1 gets all aces. By the discrete uniform law,

P(A) = |A|/|Ω|

|Ω| =
(52

16

)
is the number of hands (26 cards from 52) player 1 can have. Additionally,

once we have given player 1 all aces, then they must be given an additional 22 cards
from the remaining 48 cards in the deck. Hence,

P(A) =
(48

22

)
/
(52

26

)
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Problem 6

Suppose X , Y and Z are three independent discrete random
variables. Then, X and Y + Z are

(a) always independent

(b) sometimes independent

(c) never independent

Solution: (a)
Since X is independent of Y and Z , X is independent of g(Y ,Z )
for any function g(Y ,Z ), including g(Y ,Z ) = Y + Z .
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Problem 7

To obtain a driving license, Mina needs to pass her driving test.
Every time Mina takes a driving test, with probability 1/2, she will
clear the test independent of her past. Mina failed her first test.
Given this, let Y be the additional number of tests Mina takes
before obtaining a license. Then,

(a) E [Y ] = 1

(b) E [Y ] = 2

(c) E [Y ] = 0

Solution: (b)
Y is defined as the number of additional tests Mina takes, so this
is independent of the fact that she failed her first test. Y is a
geometric RV with p = 1/2. Hence, E [Y ] = 1/p = 2.
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Problem 8

Let Xi , 1 ≤ i ≤ 4 be independent Bernoulli random variable each with mean p = 0.1.
Let X =

∑4
i=1 Xi . That is, X is a Binomial random variable with parameters n = 4

and p = 0.1. Then,

(a) E [X1|X = 2] = 0.1

(b) E [X1|X = 2] = 0.5

(c) E [X1|X = 2] = 0.25

Solution: (b)
We have P(X1 = 1|X = 2) = 0.5, because

P(X1 = 1|X = 2) =
P(X1 ∩ X = 2)

P(X = 2)
=

p ·
(3

1

)
p(1− p)2(4

2

)
p2(1− p)2

=

(3
1

)(4
2

) = 0.5

Note that
(4

2

)
p2(1− p)2 is the probability of seeing 2 heads out of 4 tosses, and(3

1

)
p(1− p)2 is the probability of seeing 1 head in the last 3 tosses.

Hence,

E [X1|X = 2] = 1 · P(X1 = 1|X = 2) + 0 · P(X1 = 0|X = 2) = 0.5
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Lectures’ summaries



How do we reason under uncertainty?

• Using Probability Theory

• Main idea: Assign each event a measure between 0 to 1: to
signify its likelihood

• Then proceed very carefully - or our intuitions and
observations will not match
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Set theory



Back to basics: Set theory

• A set is a collection of objects, which are the elements of the
set

• If S is a set and x is an element of S , we write x ∈ S .

• If x is not an element of S , we write x /∈ S . A set can have no
elements, in which case it is called the empty set, denoted by
∅.
• Apple ∈ { Orange, Apple, Pear }

Strawberry /∈ { Orange, Apple, Pear }
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Back to basics: Set theory

• Two ways of writing a set down:

S = {1, 2, 3, 4, 5, 6}

or

S = {x |x is a possible outcome of a throw of a die}

“The collection of all elements that satisfy a certain condition
is a set”
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Set theory

• Size of a set S is denoted by |S |
• |{ Orange, Apple, Pear }| = 3

• S is a subset of T , S ⊂ T , means every element of S is also
an element of T :
∀x ∈ S , x ∈ T

I {Apple, Pear } ⊂ { Orange, Apple, Pear }
I { Orange, Apple, Pear } ⊂ { Orange, Apple, Pear }
I {Apple, Banana } 6⊂ { Orange, Apple, Pear }

• If S ⊂ T and T ⊂ S then,

S = T
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Universal Set

• Ω: contains all objects that could conceivably be of interest in
a particular context.

• In the context of coin tossing, Ω = {H,T}.
• In the context of dice, Ω = {1, 2, 3, 4, 5, 6}.
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Set operations

• Complement: Sc = {x ∈ Ω|x /∈ S}
Example: Ω = {1, 2, 3, 4, 5, 6}; S = {2, 5}
Sc = {1, 3, 4, 6}
Note that, Ωc = ∅
• The union of two sets S and T is the set of all elements that

belong to S or T (or both), and is denoted by S ∪ T .

S ∪ T = {x |x ∈ S or x ∈ T}

• The intersection of two sets S and T is the set of all elements
that belong to both S and T , and is denoted by S ∩ T .

S ∩ T = {x |x ∈ S and x ∈ T}
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Power Set

By default: ∅ ⊂ S ⊂ Ω.
Power Set: Set of all subsets

S = {1, 2, 3}

2S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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Disjoint Set

S and T are disjoint if S ∩ T = ∅

S1, S2, . . . ,Sn forms a partition of S if Si and Sj are disjoint for
any i 6= j and S1 ∪ S2 ∪ · · · ∪ Sn = S .
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Venn Diagram

Courtesy: Textbook
24 / 115



Venn Diagram - Partitions

• In (e), S , T , and U do not form partitions of W . However,
S , T , U, and (S ∪ T ∪ U)C form partitions of W .

• In (f), S , T , and U form partitions of W .

Similarly,

• In (a),(b) and (c), S and T do not form partitions of W .
However, (S ∪ T ) and (S ∪ T )C form partitions of W .

• In (d), T and TC ∩ S form partitions of S . Furthermore, S
and SC form partitions of W .
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Set Algebra

Using the above definitions, we can show that:

• Intersection Commutativity S ∩ T = T ∩ S

• Union Commutativity S ∪ T = T ∪ S

• Intersection Associativity S ∩ (T ∩ U) = (S ∩ T ) ∩ U

• Union Associativity S ∪ (T ∪ U) = (S ∪ T ) ∪ U

• Intersection Distributivity S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U)

• Union Distributivity S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U)
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Summary: Sets

• A set is a collection of objects, which are the elements of the
set

• x ∈ S , x /∈ S , empty set ∅, number of elements in a set |S |
• Subset: S ⊂ T

• Universal set Ω, set complement: Sc = {x ∈ Ω|x /∈ S}
• Set union S ∪ T = {x |x ∈ S or x ∈ T}, intersection
S ∩ T = {x |x ∈ S and x ∈ T}
• Power Set: Set of all subsets

• Disjoint sets S ∩ T = ∅
• Partition of a set: Si and Sj are disjoint for any i 6= j and

S1 ∪ S2 ∪ · · · ∪ Sn = S
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Model of Probability



Model of Probability

A probabilistic model is a mathematical description of an uncertain
situation. Two fundamental elements of a probabilistic model are

• Sample Space Ω: all possible outcomes of an experiment

• Probability Law:
A ⊂ Ω; P(A),

where A is an event (a set of possible outcomes) and

P(A) is a non-negative number presenting the likelihood of
observing the event A.

Probabilistic model involves an experiment, which produces an event
from the sample space.
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Probability Laws

• Probability represents likelihood of any outcomes or of any set
of possible outcomes.

• The probability law assigns to every event A, a number P(A),
call the probability of A.
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Axioms of Probability

• Nonnegativity:
P(A) ≥ 0

• Additivity: For any two disjoint sets A and B,

P(A ∪ B) = P(A) + P(B)

Holds for infinitely many disjoints events A1,A2,A3, . . .

P(∪iAi ) =
∑
i

P(Ai ).

• Normalization:
P(Ω) = 1
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Discrete Probability Models

If Ω consists of a finite number of possible outcomes, we are
dealing with discrete probability models.
For example,

• Coin Toss

• Dice Rolling

For discrete probabilistic models, the probability law is specified by
the probabilities of the events that consists of a single element
(that are disjoint by nature).

A = {s1, s2, . . . , sn} ⊂ Ω

P(Ω) = P({s1, s2, ..., sn}) = P(s1) + P(s2) + ...+ P(sn)
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Uniform Discrete Model

If Ω is finite and all possible outcomes are equally likely, it is a
uniform discrete model. Then, the probability of each element of
Ω has the probability of

1

|Ω|
More generally, ∀A ⊂ Ω

P(A) =
|A|
|Ω|
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Uniform Discrete Model - Example

Throwing a fair die is an example of a uniform discrete model.
Ω = {1, 2, 3, 4, 5, 6} Uniform model:

P({i}) =
1

|Ω|
=

1

6

for i = 1, 2, 3, 4, 5, 6.
A: even number shows up

A = {2, 4, 6}

|A| = 3

P(A) =
|A|
|Ω|

=
3

6
=

1

2
.
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Conditional Probability



Conditional Probabilities

Conditional probability provides us with a way to reason about the
outcome of an experiment based on partial information or
observations.

Consider rolling a fair die. What is the probability that the outcome
is 6 given that we know that the outcome is an even number.

• Suppose that you rolled a die while blindfolding yourself. Your
friend next to you told you that the number is even. Does
that change your probability space?

We can express this conditional probability using P(A|B):
conditional probability of A given B, where P(B) > 0.
In the above example,

• A = { The outcome is 6 }
• B = { The outcome is an even number }
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Conditional Probabilities

• A new probability space to be defined.

• The universe (sample space) has been changed to B

• The probability has now to be normalized by P(B)

Definition of conditional probability,

P(A|B) =
P(A ∩ B)

P(B)
=
|A ∩ B|
|B|

• If A and B are disjoint, i.e., A ∩ B = ∅, then P(A|B) = 0.
Why?

I In the case of disjoint A and B, A ∩ B = ∅.
I Which means, P(A ∩ B) = 0. So P(A|B) = 0.
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New probability space P(·|B)

Verify that the axioms of probability are satisfied!

• Nonnegativity: P(A|B) = P(A∩B)
P(B) ≥ 0 since P(A ∩ B) ≥ 0

• Additivity: For any two disjoint sets A and C , show that
P(A ∪ C |B) = P(A|B) + P(C |B).

P(A ∪ C |B) =
P((A ∪ C ) ∩ B)

P(B)

=
P((A ∩ B) ∪ (C ∩ B)))

P(B)
=

P(A ∩ B) + P(C ∩ B)

P(B)

= P(A|B) + P(C |B).

• Normalization: New sample space is B.

P(B|B) =
P(B ∩ B)

P(B)
=

P(B)

P(B)
= 1

.
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Example

Let us have two unfair coin tosses where the joint probability has

P({HH}) = 1/2

P({HT}) = 1/4

P({TH}) = 1/8

P({TT}) = 1/8

What is the probability that we have exactly one H given that the
second toss shows H?

Define A and B first.

P(A|B) =
P(A ∩ B)

P(B)
=

P({TH})
P({HH,TH})

=
1/8

1/2 + 1/8
=

1

5
.
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Another Exercise

Example: Throw of two dice. Each of the 36 outcomes are equally
likely

• A = max of two dice is less than 5

• B = min of the two dice is greater than 1

What is P(A|B)?

• P(A) = 16
36

• P(B) = 25
36

• P(A ∩ B) = 9
36

• P(A|B) = 9
25
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Sequential Model for Conditional Probabilities

Many experiments have a sequential characteristic: the future
outcomes depending on the past.

For example, consider an example involving three coin tosses.

• The first toss is unbiased (fair): P(H) = 0.5 and P(T ) = 0.5.

• Based on the outcome of the first toss, the second toss is
biased towards that outcome by 60%.
I For example, if the outcome of the first toss is H, then the

second toss has P(H) = 0.6 and P(T ) = 0.4.

• Based on the outcome of the second toss, the third toss is
biased towards that outcome by 70%.

Let us draw a tree-based sequential description.
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Sequential Model for Conditional Probabilities

How to setup a tree-based sequential description and use it?

1. Leaves represent events of interest, which occur in a
sequential manner

2. Branches represent the conditional probability

3. The probability of the end-leaf can be computed by
multiplying conditional probabilities from the root.
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Sequential Model for Conditional Probabilities

First Toss Third TossSecond Toss

Root

H

T

HH

HT

TH

TT

P(H1H2H3)=0.21

P(H1)=0.5

P(T1)= 0.5

P(H2|H1)=0.6

P(T2|H1)=0.4

P(H2|T1)=0.4

P(T2|T1)=0.6

P(H3|H2H1)=0.7

P(T3|H2H1)=0.3

P(H3|T2H1)=0.3

P(T3|T2H1)=0.7

P(H3|H2T1)=0.7

P(T3|H2T1)=0.3

P(H3|T2T1)=0.3

P(T3|T2T1)=0.7 P(T1T2T3)=0.21

P(T1T2H3)=0.09

P(H1H2T3)=0.09

P(H1T2H3)=0.06

P(T1H2T3)=0.06

P(H1T2T3)=0.14

P(T1H2H3)=0.14
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Multiplication Rule

• We learned conditional probability

P(A|B) =
P(A ∩ B)

P(B)
,

which can be re-written as

P(A ∩ B) = P(B)P(A|B) = P(A)(B|A)

• Now, what about

P(A ∩ B ∩ C ) =?
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Multiplication Rule

• We learned conditional probability

P(A|B) =
P(A ∩ B)

P(B)
,

which can be re-written as

P(A ∩ B) = P(B)P(A|B) = P(A)(B|A)

• Now, what about

P(A ∩ B ∩ C ) = P((A ∩ B) ∩ C )

= P(D ∩ C ), where D = (A ∩ B)

= P(D)P(C |D)

= P(A ∩ B)P(C |A ∩ B)

= P(A)P(B|A)P(C |A ∩ B)

These are other equivalent results for P(A ∩ B ∩ C ).
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Multiplication Rule

In general,

P(∩ni=1Ai ) ≡ P(A1 ∩ A2 ∩ . . .An)

= P(A1)P(A2|A1)P(A3|A1 ∩ A2) . . .P(An| ∩n−1
i=1 Ai )
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Total Probability Theorem
and Bayes’ Rule



Total Probability Theorem

• Let A1,A2, . . . ,An form a partition of Ω and P(Ai ) > 0

• Then, for any event B, we have

P(B) = P(A1 ∩ B) + P(A2 ∩ B) + · · ·+ P(An ∩ B)

= P(A1)P(B|A1) + P(A2)P(B|A2) + · · ·+ P(An)P(B|An).
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Bayes’ Rule

Let A1,A2, . . . ,An partition Ω and P(Ai ) > 0. For any B such
that P(B) > 0,

P(Ai |B) =
P(Ai )P(B|Ai )

P(B)

=
P(Ai )P(B|Ai )

P(A1)P(B|A1) + P(A2)P(B|A2) + · · ·+ P(An)P(B|An)
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Independence



Independence

• Consider flipping a fair coin twice in a row.

• If we know the coin is fair, does knowing the result of the first
flip give us any information about the result of the second flip?

• What’s the probability the coin comes up heads on the second
flip?

• What’s the probability the coin comes up heads on the second
flip given that it came up heads on the first flip?
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Probabilistic Independence

• Intuitively, when knowing that one event occurred doesn’t
change the probability that another event occurred or will
occur, we say that the two events are probabilistically
independent.

• We say that two events A and B are independent if and only
if (iff)

P(A ∩ B) = P(A)P(B) .

and this implies that P(A|B) = P(A) and P(B|A) = P(B).

52 / 115



Rolling Two Dice

• Question: Suppose you roll two fair four sided dice. Are the
events A =“maximum is less than 3” and B=“sum is greater
than 3” independent?

1      2      3      4 
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1

1st Roll

2
n

d
 R

o
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Sample Space

1      2      3      4 
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1st Roll

2n
d 

R
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|A| = 4

1      2      3      4 

4
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1

 

1st Roll

2n
d 

R
ol

l

|B| = 13

• Answer 2: Formally,

P(A ∩ B) =
1

16
, P(A) =

1

4
and P(B) =

13

16
.

Since 1
16 6=

1
4 ·

13
16 , the events are not independent.
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An Event and Its Complement

• Question: Are A and Ac independent if 0 < P(A) < 1?

• Answer 1: Intuitively, no. If you know A happens, then you
know AC does not happen.

• Answer 2: Formally, P(A ∩ AC ) = P(∅) = 0. If
0 < P(A) < 1, then

P(A)P(AC ) 6= 0 .
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Independence of Three Events

• Three events A, B, and C are independent iff:

P(A ∩ B) = P(A)P(B)

P(A ∩ C ) = P(A)P(C )

P(B ∩ C ) = P(B)P(C )

P(A ∩ B ∩ C ) = P(A)P(B)P(C )

• First three conditions imply that any two events are
independent (known as pairwise independence)

• Pairwise independence does not imply the independence of all
events.

• Suppose we have a finite collection of events A1,A2, ...,An.
These events are said to be independent iff

P (∩i∈SAi ) =
∏
i∈S

P(Ai ), for every subset S of {1, 2, ..., n}
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Conditional Independence

• A and B are conditionally independent given C iff

P(A ∩ B | C ) = P(A | C )P(B | C )

• This is equivalent to P(A | B ∩ C ) = P(A | C ), assuming that
P(B | C ) > 0.
I If C is given, additional information of knowing B has occurred

does not change the conditional probability of A.

• This is equivalent to P(B | A ∩ C ) = P(B | C ), assuming that
P(A | C ) > 0.
I If C is given, additional information of knowing A has occurred

does not change the conditional probability of B.
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Counting



Counting and Discrete Probability Laws

• If Ω is finite and all outcomes are equally likely, then

P(A) =
|A|
|Ω|

.

• The calculation of probabilities often involve counting the
number of outcomes in various events.

• Sometimes it’s challenging to compute |A| and |Ω| and they
are too large work out by hand. . .

We covered different counting methods:

• Permutations

• k-Permutations

• Combinations

• Partitions
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The Counting Principle

• Consider a sequential process with s stages. At each stage i ,
there are ni possible results. How many outcomes does the
process have?

• How many possible outcomes are possible from a sequence of
s stages?

n1 × n2 × · · · × ns =
s∏

i=1

ni .
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The Counting Principle

• Consider a sequential process with s stages. At each stage i ,
there are ni possible results. How many outcomes does the
process have?

• How many possible outcomes are possible from a sequence of
s stages?

n1 × n2 × · · · × ns =
s∏

i=1

ni .
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Counting Permutations

• Let S be a set of n objects.

• Consider an n-stage experiment where at each stage we
choose one object without replacement.
I We pick objects until there’s no more objects to pick.

• This process produces an ordering or permutation of the n
objects.
I For example, if n = 3 and S = {a, b, c}, one ordering can be

bac.

• This is an n stage process. We have s1 = n, s2 = n − 1,...,
sn = 1.

• By the counting principle, the number of permutations is

n(n − 1)(n − 2) · · · 1 = n!

• For permutations, order matters, i.e., abc 6= bac .
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Counting k-Permutations

• Let S be a set of n objects.

• Consider a k-stage experiment where k ≤ n. At each stage we
choose one object without replacement.
I We pick only k objects.

• This process produces an ordering of the k objects, which is
also called a k-permutation.
I For example, if n = 3, k = 2, and S = {a, b, c}, one possible

2-permutation is ba and another is ab.

• This is a k-stage process where s1 = n, s2 = n − 1,...,
sk = n − k + 1.

• By the counting principle, the number of permutations is

n(n − 1)(n − 2) · · · (n − k + 1) =
n!

(n − k)!

• Order also matters for k-permutations.

61 / 115



Counting Combinations

• Let S be a set of n objects. How many subsets of size k are
there?

• The number of k-permutations is n!/(n − k)! but this over
counts the number of subsets, e.g., ab and ba are different
2-permutations of {a, b, c}, but the same subset {a, b}.
I Order does NOT matters for combinations.

• k! different k-permutations belong to the same subset of k
objects, so the number of “k-combinations” is

n!
(n−k)!

k!
=

n!

(n − k)!k!
,

which is denoted
(n
k

)
, pronounced as “n choose k”.

• Note that
(n

0

)
= 1
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Counting Partitions

• A combination divides items into one group of k and one
group of n − k . Thus, a combination can be viewed as a
partition of the set in two.

• Consider an experiment where we divide n objects into `
groups with sizes n1, n2, ..., n` such that n =

∑`
i=1 ni .

• How many partitions are there?

• There are
( n
n1

)
ways to choose the objects for the first

partition. This leaves n − n1 objects. There are
(n−n1

n2

)
ways

to choose objects for the second partition. There are(n−n1−n2−...−n`−1
n`

)
ways to choose the objects for the last

group.
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Counting Partitions

• Using the counting principle, the number of partitions is thus:(
n

n1

)
·
(
n − n1

n2

)
· · ·
(
n − n1 − n2 − ...− n`−1

n`

)

=
n!

n1!(n − n1)!
· (n − n1)!

n2!(n − n1 − n2)!
· · · (n − n1 − n2 − ...− n`−1)!

n`!(n − n1 − n2 − ...− n`)!

• Note that (n − n1 − n2 − ...− n`)! = 0! = 1.

• Canceling terms yields the final result:

n!

n1! · · · n`!
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Summary of Counting Problems

Structure Description
Order
Matters

Formula

Permutation
Number of ways to order n ob-
jects

Yes n!

k-Permutation

Number of ways to form a se-
quence of size k using k dif-
ferent objects from a set of n
objects

Yes n!
(n−k)!

Combination
Number of ways to form a set
of size k using k different ob-
jects from a set of n objects

No n!
k!(n−k)!

Partition
Number of ways to partition n
objects into ` groups of size
n1, ..., n`

No n!
n1!...n`!
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The Binomial Law

• If we toss n coins, what’s the probability of seeing k heads,
denoted as Pn(k)? (without exhaustively enumerating all
sequences?)

• Any single sequence of length n with k heads has probability

pk(1− p)n−k .

• But how many different sequences of length n contain k
heads? (

n

k

)
=

n!

k!(n − k)!

where
(n

0

)
= 1.

• Thus,

Pn(k) =

(
n

k

)
pk(1− p)n−k .
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The Binomial Law

• The following equation is often called the binomial
probabilities.

Pn(k) =

(
n

k

)
pk(1− p)n−k ,

where
(n
k

)
is referred to as binomial coefficient.
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Discrete random variables
and

Probability mass functions



Random Variables Give An Easy Way to Specify
Events

• If we have a function X : Ω→ R, we can use it to construct a
different event for each value of x ∈ R:

{X = x} = {o|o ∈ Ω and X (o) = x}

• In the dice example, the event {X = x} is the set of outcomes
o ∈ Ω that are mapped to the the same value x by the
function X .
For example,

{X = 2} = {(1, 2), (2, 1), (2, 2)}

{X = 3} = {(1, 3), (2, 3), (3, 3)(3, 1), (3, 2)}

{X = 1} = {(1, 1)}
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Discrete Random Variables and Probability

• A random variable is called discrete if its input (sample
space) is either finite or countably infinite.

• We can compute the probability of an event {X = x} by
decomposing it into atomic events and using the probability
rule:

P(X = x) = pX (x) = P({o|o ∈ Ω and X (o) = x})

• Probability law: A function pX (x) that maps event to a
number between 0 and 1 that satisfies the probability axioms:

1. Nonnegativity: pX (x) ≥ 0,∀x .
2. Normalization:

∑
x pX (x) = 1.
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Example: Maximum of Dice Rolls

• For example, in the event of {X = 2} for the dice rolling
example where X (r1, r2) = max(r1, r2)

P(X = 2) = P({(1, 2), (2, 1), (2, 2)})
= P((1, 2)) + P((2, 1)) + P((2, 2)) = 3/16

• We can work out the probability for all possible values of x :
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In general. . .

• The probability associated with the event {X = x} for each
element x ∈ R of a discrete random variable X is referred to
as the probability mass function or PMF of the random
variable.

• The PMF is denoted by P(X = x) or pX (x).

I The x-axis represents all possible outcomes of the event
I The y-axis represents the associated probabilities
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Common Discrete Random Variables



Discrete Uniform Random Variables

• A discrete uniform random variable X with range [a, b] takes
on any integer value between (and including) a and b with the
same probability

• For example, the random variable that maps a fair six-sided
dice roll to the number that comes up is a uniform random
variable with a = 1, b = 6 and P(X = k) = 1/6 for
k = 1, ..., 6.

• The PMF of a discrete uniform random variable X is

P(X = k) =
1

b − a + 1
for k = a, . . . , b

• Used to model probabilistic situations where each of the
values a, ..., b are equally likely.
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Bernoulli Random Variables

• Suppose we have an experiment with two outcomes H and T .
H happens with probability p and T with probability 1− p,
0 < p < 1.

• We define a random variable X such that X (H) = 1 and
X (T ) = 0.

• This is called a Bernoulli random variable X that takes the
two values 0 or 1.

• Its PMF looks like

P(X = k) =

{
1− p if k = 0
p if k = 1

• You can also define X (H) = 0 and X (T ) = 1, with
P(X = 1) = p′ = 1− p
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Bernoulli Random Variables: Examples

• Whether a coin lands heads or tails.

• Whether a server is online or offline.

• Whether an email is spam or not.

• Whether a pixel in a black and white image is black or white.

• Whether a patient has a disease or not.
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Binomial Random Variable

• A binomial random variable is the combination of independent
and identically distributed Bernoulli random variables

• Suppose we flip n coins independently, where each coin has
probability p of being heads

• The set of outcomes is:

Ω = {(TTT . . .TT ), (TTT . . .TH), . . . , (HHH . . .HH)}

• Define a random variable X where for each o ∈ Ω,

X (o) = “the number of heads in outcome o”

• We’re already shown that P(X = k) =
(n
k

)
pk(1− p)n−k .
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Binomial Random Variables: Examples

• The number of heads in N coin tosses.

• The number of servers that fail in a cluster of N servers.

• The number of games a football team wins in a season of N
games (assuming i.i.d.).

• The number of True/False questions you get correct if you
guess each of N questions.
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Geometric Random Variables

• Suppose we flip a biased coin repeatedly until it lands heads.
Let X be the number of tosses needed for a head to come up
for the first time.

• The PMF of a geometric random variable X is

P(X = k) = (1− p)k−1 · p for k = 1, 2, 3, . . .

• Used to model the number of repeated independent trials up
to (and including) the first “successful” trial.

• Example: the number of patients we test before the first one
we find who has a given disease.
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Geometric Random Variables: Example

• Products made by a machine have a 3% defective rate.

• What is the probability that the first defect occurs in the fifth
item inspected?

P(X = k) = (1− p)k−1 · p = (1− 0.03)5−1 · 0.03 = 0.0265 . . .
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Poisson Random Variables

• A Poisson random variable X is a random variable that has
the following PMF

P(X = k) = e−λ
λk

k!
for k = 0, 1, 2, . . .

• The Poisson distribution is one of the most widely used
probability distributions.

• Built based on Taylor series: ex =
∑∞

k=0
xk

k! .

• Think about Poisson RV as a framework that provides
approximation of a real-life random variable as a function of λ.
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Poisson Random Variables

• Think about Poisson RV as a framework that provides
approximation of different PMFs as a function of λ.
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Poisson Random Variables

• It is generally used in scenarios where we are counting the
occurrences of certain events within an interval of time or
space.
I The number of typos in a book with n words.
I The number of cars that crash in a city on a given day.
I The number of phone calls arriving at a call center per minute

etc.

• λ represents the expected number of events (we will learn
more about this).
I The average number of typos in a book.
I The average number of car crash per day.
I The average number of phone calls per minute.
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Poisson Random Variables: Example

• Suppose that the number of phone calls arriving at a call
center per minute can be modeled by a discrete Poisson PMF.

• In average, the call center receives 10 calls.

• What is the probability that the center will receive 5 calls?

PX (k) = e−λ
λk

k!

PX (k) = e−10 105

5!
= 0.0378...
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Poisson Random Variables

• A Poisson PMF with λ = np is a good approximation for a
binomial PMF with very small p and very large n if k � n
I A bionomial RV X is the number of heads (k) in the n-toss

sequence, where the coin comes up a head with probability p.

• Example: n = 100 and p = 0.01 for the binomial r.v. where as
λ = np for the Poisson r.v.
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• Poisson PMF provides much simpler models and calculations:(n
k

)
pk(1− p)n−k vs. e−λ λk

k!
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Summary: Discrete Random Variables

• Uniform: For k = a, . . . , b:

P(X = k) =
1

b − a + 1

• Bernoulli: For k = 0 or 1:

P(X = k) =

{
1− p if k = 0
p if k = 1

• Binomial: For k = 0, . . . ,N

P(X = k) =

(
N

k

)
pk (1− p)N−k

• Geometric: For k = 1, 2, 3, . . ., P(X = k) = (1− p)k−1 · p
• Poisson: P(X = k) = e−λ λ

k

k! for k = 0, 1, 2, . . .
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Expectation and Variance



Expected Value

• For a random variable X , the expected value is defined to be:

E [X ] =
∑
x∈R

x P(X = x)

i.e., the probability-weighted average of the possible values of
X .

• E [X ] is also called the expectation or mean of X .

• Why do we care to know about the expected value?

• Given a certain PMF, what is the ”average” outcome that I
am expecting to have?

• For example, if I bet the same amount of money on roulette
and play it for a long-term period, how much do I expect to
make?
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Expected Value: Question

• Expectation:

E [X ] =
∑
k∈R

k P(X = k)

• If X maps to {1, 2, 6} and

P(X = 1) = 1/3 , P(X = 2) = 1/2 , P(X = 6) = 1/6

then E [X ] = 1 · 1
3 + 2 · 1

2 + 6 · 1
6 = 2.33 . . .
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Expectations of Common Random Variables

• Uniform on {a, a + 1, . . . , b}: E [X ] = a+b
2

• Bernoulli: E [X ] = (1− p) · 0 + p · 1 = p

• Binomial: E [X ] =
∑n

k=0 k ·
(n
k

)
pk(1− p)n−k = np

• Geometric: E [X ] =
∑∞

k=1 k · (1− p)k−1p = 1
p

• Poisson: E [X ] =
∑∞

k=0 k ·
e−λ

k! λ
k = λ
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Properties of Expectation

• Linearity of Expectation: If a and b are any real values,
then the expectation of aX + b is:

E [aX + b] = a · E [X ] + b

• Expectation of Expectation: Applying the expectation
operator more than once has no effect. E [E [X ]] = E [X ] since
E [X ] is already a constant.
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Variance

• Definition: Variance measures how far we expect a random
variable to be from its average:

var(X ) = E [(X − E [X ])2] =
∑
k

(k − E [X ])2 · P(X = k)

• An equivalent definition is

var(X ) = E [X 2]− E [X ]2

• Definition: we generally define the nth moment of X as
E [X n], the expected value of the random variable X n.
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Variance of Common Random Variables

• Bernoulli: var[X ] = p(1− p)

• Binomial: var[X ] = np(1− p)

• Geometric: var[X ] = 1−p
p2

• Uniform: var[X ] = (b−a+1)2−1
12

• Poisson: var[X ] = λ
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Standard Deviation

• The term standard deviation simply refers to the positive
square root of the variance, which always exists and is also
positive:

std(X ) =
√

var(X )

• The standard deviation is also a measure of dispersion around
the mean.

• One reason that people like to report standard deviations
instead of variances is that the units are the same as X .

• var(X ) = E [(X − E [X ])2] vs. std(X ) =
√
E [(X − E [X ])2]

• Example 1: If X is height in feet, then var(X ) has units in
square feet while std(X ) again has units in feet.

94 / 115



Functions of Random Variables



Functions of Random Variables

• If X is a random variable and f : R→ R then

Y = f (X )

is also a random variable with PMF:

P(Y = k) = P(f (X ) = k) =
∑

o∈Ω with f (X (o))=k

P(o)

• Example, let X represent an outcome from a 6 sided fair die
where

P(X = i) = 1/6, ∀i .

Suppose that you will receive money that is the square of the
outcome, and we define a r.v. Y as the amount of money.

• This function Y = f (X ) can be expressed as

Y = X 2
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Functions of Random Variables

• Note that Y is also a random variable, whose PMF looks like.
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Functions of Random Variables

• Expectation of Y = f (X ):

E [Y ] =
∑
y

yP(Y = y) =
∑
y

yP(X = f −1(y))

=
∑
x

f (x)P(X = x)

• For the previous example,

E [X ] = 1× 1/6 + 2× 1/6 + · · ·+ 6× 1/6 = 3.5

E [Y ] = 12 × 1/6 + 22 × 1/6 + · · ·+ 62 × 1/6 = $15.2
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Functions of Random Variables

• Variance of Y :

var [Y ] = E [(Y − E [Y ])2] =
∑

k∈{1,4,...,36}

(k − E [Y ])2 · P(Y = k)

=
∑

k∈{1,4,...,36}

(k − E [Y ])2 · P(X = f −1(k))

= (1− E [Y ])2P(X =
√

1) + (4− E [Y ])2P(X =
√

4) + · · ·

• For the previous example,

E [X ] = 1× 1/6 + 2× 1/6 + · · ·+ 6× 1/6 = 3.5

E [Y ] = 12 × 1/6 + 22 × 1/6 + · · ·+ 62 × 1/6 = $15.2

• Then, the variance for Y is

var [Y ] = (12 − 15.2)2 × 1/6 + (22 − 15.2)2 × 1/6 + · · ·

+(62 − 15.2)2 × 1/6 = 149.1

99 / 115



Example: Linear function

• If Y = aX + b, then E [Y ] = aE [X ] + b and
var[Y ] = a2var[X ]

var[Y ] = var[aX + b]

=
∑
k

(ak + b − E [aX + b])2P(X = k)

=
∑
k

(ak + b − aE [X ]− b)2P(X = k)

=
∑
k

(ak − aE [X ])2P(X = k)

= a2
∑
k

(k − E [X ])2P(X = k)

= a2var[X ].
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Multiple Random Variables



Multiple Random Variables

• Consider two random variables, X and Y associated with the
same experiment.

• For x , y ∈ R, we can define events of the form

{X = x ,Y = y} = {X = x} ∩ {Y = y}

• The probabilities of these events give the joint PMF of X
and Y :

pX ,Y (x , y) = P(X = x ,Y = y) = P(X = x and Y = y) = P({X = x}∩{Y = y})

• Useful for describing multiple properties over the outcome
space of a single experiment, e.g., pick a random student and
let X be their height and Y be their weight.
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Tabular Representation of Joint PMFs

P(X,Y)

X\Y Y = 1 Y = 2 Y = 3 Y = 4

X = 1 0.1 0.1 0 0.2

X = 2 0.05 0.05 0.1 0

X = 3 0 0.1 0.2 0.1

• e.g., P(X = 2,Y = 3) = ?, P(X = 3,Y = 1) = ?, ...
• Given the joint PMF, can we compute P(X = x) and
P(Y = y)?

pX (x) = P(X = x) =
∑
y

P(X = x ,Y = y)

pY (y) = P(Y = y) =
∑
x

P(X = x ,Y = y)

• If we start with the joint PMF of X and Y , we say pX (x) is
the marginal PMF of X and pY (y) is the marginal PMF of
Y .
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Computing Marginals from the Joint Distribution

• Suppose Y takes the values y1, y2, . . . , yN , then

{Y = y1}, {Y = y2}, . . . , {Y = yN}

form partitions of ΩY .

• Hence, {X = x} can be partitioned into

{X = x} ∩ {Y = y1}, {X = x} ∩ {Y = y2}, . . . , {X = x} ∩ {Y = yN}

• Therefore,

P(X = x) = P({X = x})
= P({X = x} ∩ {Y = y1}) + P({X = x} ∩ {Y = y2})

. . .+ P({X = x} ∩ {Y = yN})

=
∑
y

P({X = x} ∩ {Y = y}) =
∑
y

P(X = x ,Y = y)
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Marginal PMFs

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0.2

2 0.05 0.05 0.1 0

3 0 0.1 0.2 0.1

X P(X)

1 0.4

2 0.2

3 0.4
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Marginal PMFs

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0.2

2 0.05 0.05 0.1 0

3 0 0.1 0.2 0.1

Y 1 2 3 4

P(Y) 0.15 0.25 0.3 0.3
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Example 1

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0

2 0 0.05 0.1 0.05

3 0.1 0.2 0.2 0.1

What’s the value of P(X = 2,Y = 3)?

A: 0

B: 0.1

C: 0.05

D: 0.2

E: 1

Answer is B.
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Example 1

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0

2 0 0.05 0.1 0.05

3 0.1 0.2 0.2 0.1

What’s the value of P(X = 2,Y = 3)?

A: 0

B: 0.1

C: 0.05

D: 0.2

E: 1

Answer is B.
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Example 2

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0

2 0 0.05 0.1 0.05

3 0.1 0.2 0.2 0.1

What’s the value of P(X = 3)?

A: 0.1

B: 0.4

C: 0.05

D: 0.6

E: 1

Answer is D.
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Example 2

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0

2 0 0.05 0.1 0.05

3 0.1 0.2 0.2 0.1

What’s the value of P(X = 3)?

A: 0.1

B: 0.4

C: 0.05

D: 0.6

E: 1

Answer is D.
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Conditional PMFs

• Conditional PMF of X given Y :

P(X = i |Y = j) = P({X = i}|{Y = j}) .

• Compute P(X |Y ) using the definition of conditional
probability:

P(X = i |Y = j) =
P(X = i ,Y = j)

P(Y = j)

since for any two events A,B we have P(A|B) = P(A∩B)
P(B) .

• The conditional probability P(X = i |Y = j) is the joint
probability P(X = i ,Y = j) normalized by the marginal
P(Y = j).

• An equivalent definition of independence is X and Y are
independent if

for all i , j , P(X = i |Y = j) = P(X = i)

109 / 115



Conditional PMFs

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0.2

2 0.05 0.05 0.1 0

3 0 0.1 0.2 0.1

Y 1 2 3 4

P(Y) 0.15 0.25 0.3 0.3

P(X |Y )

X \Y 1 2 3 4

1 0.66 0.4 0 0.66

2 0.33 0.2 0.33 0

3 0 0.4 0.66 0.33
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Functions of Two Random Variables

Given two random variables X and Y and a function
f : R× R→ R,

Z = f (X ,Y )

is a new random variable.
For example, pick random students and let X be their height and
Y be their weight. If we define Z as the Body Mass Index (BMI)
where

BMI = weight (lb)/(height (in))2 × 703.

That is,
Z = f (X ,Y ) = Y /X 2 × 703.

Then, Z is also a random variable.
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Functions of Two Random Variables

The PMF of Z can be expressed as

pZ (z) =
∑

{(x ,y)|f (x ,y)=z}

pX ,Y (x , y).

For example, let us define a new random variable Z = X × Y
where the joint PMF of X and Y is

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0

2 0 0.05 0.1 0.05

3 0.1 0.2 0.2 0.1

Then, the PMF of Z looks like

Z 1 2 3 4 6 8 9 12

P(Z ) 0.1 0.1 0.1 0.05 0.3 0.05 0.2 0.1
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Expectation and Variance of Two Random Variables

• The expected value and variance of Z can be respectively
computed as

E [Z ] =
∑
z

zP(Z = z) =
∑
x ,y

f (x , y)P(X = x ,Y = y)

=
∑
x

∑
y

f (x , y)P(X = x ,Y = y)

=
∑
y

∑
x

f (x , y)P(X = x ,Y = y)

and
var(Z ) = E [Z 2]− E [Z ]2.

• If X and Y are independent, for all x , y

P(X = x ,Y = y) = P(X = x)P(Y = y).
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Linearity of Expectation

• Lemma: Given two random variables X , Y , and Z = X + Y
then

E [Z ] = E [X + Y ] = E [X ] + E [Y ]

• Lemma: If X and Y are independent then

E [XY ] = E [X ]E [Y ]

var(X + Y ) = var(X ) + var(Y )
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Multiple Random Variables

• Given random variables X1,X2, . . . ,XN and a function
f : R× R× . . .× R→ R,

Z = f (X1,X2, . . . ,XN)

is a new random variable.

• Linearity of Expectation: If Z =
∑N

i=1 Xi ,

E [Z ] = E

[
N∑
i=1

Xi

]
=

N∑
i=1

E [Xi ]

• Independence: If X1, . . . ,XN are independent,

PX1,··· ,XN (xi , · · · , xN) =
N∏
i=1

PXi (xi ) .

• Linearity of Variance: If Z =
∑N

i=1 Xi and all Xi are independent,

var [Z ] = var

(
N∑
i=1

Xi

)
=

N∑
i=1

var [Xi ]
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