COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan
University of Massachusetts at Amherst

Spring 2019

Lecture 3: Conditional Probability

Recap: Probability

- Sample space Ω : all possible outcomes of an experiment
- Probability of an event A (a set of possible outcomes) denoted as $P(A) \in[0,1], \quad A \subset \Omega$
- Axioms of probability
- Nonnegativity: $P(A) \geq 0$
- Additivity: For any disjoint events $A_{1}, A_{2}, A_{3}, \ldots$,

$$
P\left(\cup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

- Normalization: $P(\Omega)=1$
- Conditional probabilities $P(A \mid B)$: probability of event A given event B happens
- New probability space:

$$
P(A \mid B)=\frac{\text { number of elements of } A \cap B}{\text { number of elements of } B}=\frac{P(A \cap B)}{P(B)}
$$

"Real-world" example of conditional probability

New probability space $P(\cdot \mid B)$

Verify that the axioms of probability are satisfied!

- Nonnegativity: $P(A \mid B)=\frac{P(A \cap B)}{P(B)} \geq 0$ since $P(A \cap B) \geq 0$
- Additivity: For any two disjoint sets A and C, show that $P(A \cup C \mid B)=P(A \mid B)+P(C \mid B)$.

$$
\begin{aligned}
& P(A \cup C \mid B)=\frac{P((A \cup C) \cap B)}{P(B)} \\
& =\frac{P((A \cap B) \cup(C \cap B)))}{P(B)}=\frac{P(A \cap B)+P(C \cap B)}{P(B)} \\
& =P(A \mid B)+P(C \mid B) .
\end{aligned}
$$

- Normalization: New sample space is B.

$$
P(B \mid B)=\frac{P(B \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1
$$

Example

Let us have two unfair coin tosses where the joint probability has

$$
\begin{aligned}
& P(\{H H\})=1 / 2 \\
& P(\{H T\})=1 / 4 \\
& P(\{T H\})=1 / 8 \\
& P(\{T T\})=1 / 8
\end{aligned}
$$

What is the probability that we have exactly one H given that the second toss shows H ?

Define A and B first.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(\{T H\})}{P(\{H H, T H\})}=\frac{1 / 8}{1 / 2+1 / 8}=\frac{1}{5} .
$$

Challenging Exercise

Example: Throw of two dice. Each of the 36 outcomes are equally likely

- $A=$ max of two dice is less than 5
- $B=\min$ of the two dice is greater than 1

What is $P(A \mid B)$? (Please try this at home)

- $P(A)=\frac{16}{36}$
- $P(B)=\frac{25}{36}$
- $P(A \cap B)=\frac{9}{36}$
- $P(A \mid B)=\frac{9}{25}$

Sequential Model for Conditional Probabilities

Many experiments have a sequential characteristic: the future outcomes depending on the past.

For example, consider an example involving three coin tosses.

- The first toss is unbiased (fair): $P(H)=0.5$ and $P(T)=0.5$.
- Based on the outcome of the first toss, the second toss is biased towards that outcome by 60%.
- For example, if the outcome of the first toss is H, then the second toss has $P(H)=0.6$ and $P(T)=0.4$.
- Based on the outcome of the second toss, the third toss is biased towards that outcome by 70%.

Let us draw a tree-based sequential description.

Sequential Model for Conditional Probabilities

Sequential Model for Conditional Probabilities

How to setup a tree-based sequential description and use it?

1. Leaves represent events of interest, which occur in a sequential manner
2. Branches represent the conditional probability
3. The probability of the end-leaf can be computed by multiplying conditional probabilities from the root.

Sequential Model for Conditional Probabilities

Multiplication Rule

- We learned conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

which can be re-written as

$$
P(A \cap B)=P(B) P(A \mid B)=P(A)(B \mid A)
$$

- Now, what about

$$
\begin{aligned}
P(A \cap B \cap C) & =P((A \cap B) \cap C) \\
& =P(D \cap C), \text { where } D=(A \cap B) \\
& =P(D) P(C \mid D) \\
& =P(A \cap B) P(C \mid A \cap B) \\
& =P(A) P(B \mid A) P(C \mid A \cap B)
\end{aligned}
$$

These are other equivalent results for $P(A \cap B \cap C)$.

Multiplication Rule

In general,

$$
\begin{aligned}
P\left(\cap_{i=1}^{n} A_{i}\right) & \equiv P\left(A_{1} \cap A_{2} \cap \ldots A_{n}\right) \\
& =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \ldots P\left(A_{n} \mid \cap_{i=1}^{n-1} A_{i}\right)
\end{aligned}
$$

Sequential Model

Probability of a leaf of this tree?

First Toss
Second Toss
Third Toss

More exercise

Three cards are drawn from an ordinary 52-card deck without replacement (drawn cards are not placed back in the deck). We wish to find the probability that none of the three cards is a heart. We assume that at each step, each one of the remaining cards is equally likely to be picked. (see, Textbook)

More exercise

- $A_{i}=$ first draw is not a heart, $i=1,2,3$
- $P\left(A_{1}\right)=\frac{39}{52}$
- $P\left(A_{2} \mid A_{1}\right)=\frac{38}{51}$.
- $P\left(A_{3} \mid A_{2} \cap A_{1}\right)=\frac{37}{50}$
- $P\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{39.38 .37}{52.51 .50}$

The sequential model

