COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan
University of Massachusetts at Amherst

Spring 2019

Lecture 27: Bayesian Networks

Outline of this Lecture

- Review of Chain Rule
- Review of Joint and Marginal Probabilities
- The Curse of Dimensionality and Factorization
- Definition of Bayesian Network (a Directed Acyclic Graph)
- Some examples of BayesNet

Chain Rule

- Simplest form of the chain rule is

$$
P(A, B)=P(B \mid A) P(A)=P(A \mid B) P(B)
$$

- Chain rule for 3 variables

$$
\begin{aligned}
P(A, B, C) & =P(C \mid A, B) P(A \mid B) P(B) \\
& =P(C \mid A, B) P(B \mid A) P(A) \\
& =P(B \mid A, C) P(A \mid C) P(C) \\
& =P(B \mid A, C) P(C \mid A) P(A) \\
& =P(A \mid B, C) P(B \mid C) P(C) \\
& =P(A \mid B, C) P(C \mid B) P(B)
\end{aligned}
$$

- This can be generalized as

$$
P\left(X_{n}, \cdots, X_{1}\right)=P\left(X_{n} \mid X_{n-1}, \cdots, X_{1}\right) P\left(X_{n-1}, \cdots, X_{1}\right)
$$

Joint and Marginal Probabilities - Review

- For two discrete random variables X and Y, the joint PMF $P(X, Y)$ was defined as

$$
P(X=x, Y=y)=P(X=x \text { and } Y=y)=P(\{X=x\} \cap\{Y=y\})
$$

- Marginal probabilities could be computed as

$$
\begin{aligned}
& P(X=x)=\sum_{y} P(X=x, Y=y) \\
& P(Y=y)=\sum_{x} P(X=x, Y=y)
\end{aligned}
$$

- For multiple discrete random variables $X_{1}, \cdots X_{n}$ whose joint PMF is denoted as $P\left(X_{1}, \cdots X_{n}\right)$, marginal probabilities could be computed as

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} \cdots \sum_{x_{n}} P\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{n}=x_{n}\right)
$$

Marginal Probability - Review

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0.2
2	0.05	0.05	0.1	0
3	0	0.1	0.2	0.1

X	$P(X)$
1	0.4
2	0.2
3	0.4

Many Random Variables

- In practice, it is much common to encounter real-world problems that involve measuring multiple random variables X_{1}, \ldots, X_{n} for each repetition of the experiment.
- These random variables X_{1}, \ldots, X_{n} may have complex relationships among themselves.

Example: ICU Monitoring $(d \approx 10)$

Heart rate, blood pressure, temperature....

Example: Movie Recommendation

A complex decision process. Needs to look at ratings and viewing patterns of a large number of subscribers.

NETFLIX				Movies, TV shows, actors, directors, genres
Watch Instantly	Browse DVDs	Your Queue	Movies You'll ${ }^{\text {¢ }}$	
Congratulations! Movies we think You will Add movies to your Queue, or Rate ones you've seen for even better suggestions.				

Joint PMFs for Many Random Variables

- Before we can think about inference or estimation problems with many random variables, we need to think about the implications of representing joint PMFs over many random variables.
- Why joint PMFs of all random variables?
- It allows us to compute (marginal or conditional) probabilities of any event that we are interested in.
- For example, what is the probability that a patient has cancer given test results?

$$
P\left(\text { Cancer } \mid \text { Test }_{1}, \cdots, \text { Test }_{n}\right)=\frac{P\left(\text { Cancer, }^{\text {Test } \left._{1}, \cdots, \text { Test }_{n}\right)}\right.}{P\left(\text { Test }_{1}, \cdots, \text { Test }_{n}\right)}
$$

The Curse of Dimensionality

- Suppose we have an experiment where we obtain the values of d random variables X_{1}, \ldots, X_{d}, where each variable has binary outcomes (for simplicity).
- Question: How many numbers does it take to write down a joint distribution for them?
- Answer: We need to define a probability for each d-bit sequence:

$$
\begin{aligned}
& P\left(X_{1}=0, X_{2}=0, \ldots, X_{d}=0\right) \\
& P\left(X_{1}=1, X_{2}=0, \ldots, X_{d}=0\right)
\end{aligned}
$$

$$
P\left(X_{1}=1, X_{2}=1, \ldots, X_{d}=1\right)
$$

- The number of d-bit sequences is 2^{d}. Because we know that the probabilities have to add up to 1 , we need to write down $2^{d}-1$ numbers to specify the full joint PMF on d binary variables.

How Fast is Exponential Growth?

- $2^{d}-1$ grows exponentially as d increases linearly:

d	$2^{d}-1$
1	1
10	1023
100	$1,267,650,600,228,229,401,496,703,205,375$
\vdots	\vdots

- Storing the full joint PMF for 100 binary variables would take about 10^{30} real numbers or about 10^{18} terabytes of storage!
- Joint PMFs grow in size so rapidly, we have no hope whatsoever of storing them explicitly for problems with more than about 30 (binary) random variables.

Factorizing Joint Distributions

- We start by factorizing the joint distribution, i.e., re-writing the joint distribution as a product of conditional PMFs over single variables (called factors).
- Let us assume that we have a joint probability table of X_{1}, X_{2}, and X_{3}.
- We need to start by applying the chain rule using a specific order of variables. Let's use the order X_{1}, X_{3}, X_{2} :

$$
\begin{aligned}
& P\left(X_{1}=a_{1}, X_{2}=a_{2}, X_{3}=a_{3}\right) \\
& \quad=P\left(X_{1}=a_{1}\right) P\left(X_{2}=a_{2}, X_{3}=a_{3} \mid X_{1}=a_{1}\right) \\
& \quad=P\left(X_{1}=a_{1}\right) P\left(X_{3}=a_{3} \mid X_{1}=a_{1}\right) P\left(X_{2}=a_{2} \mid X_{1}=a_{1}, X_{3}=a_{3}\right)
\end{aligned}
$$

- The representation has exactly the same storage requirements as the full joint PMF. Why?

Conditional Independence: Simplification 1

- If we know some conditional independency between the variables, we can save some space.
- Let us assume that we happened to know the following independency:
- $P\left(X_{3}=a_{3} \mid X_{1}=a_{1}\right)=P\left(X_{3}=a_{3}\right)$ for all a_{1}, a_{3}
- $P\left(X_{2}=a_{2} \mid X_{1}=a_{1}, X_{3}=a_{3}\right)=P\left(X_{2}=a_{2}\right)$ for all a_{1}, a_{2}, a_{3}.
- This gives the "Marginal independence model"

$$
\begin{aligned}
& P\left(X_{1}=a_{1}, X_{2}=a_{2}, X_{3}=a_{3}\right) \\
& \quad=P\left(X_{1}=a_{1}\right) P\left(X_{3}=a_{3} \mid X_{1}=a_{1}\right) P\left(X_{2}=a_{2} \mid X_{1}=a_{1}, X_{3}=a_{3}\right) \\
& \quad=P\left(X_{1}=a_{1}\right) P\left(X_{2}=a_{2}\right) P\left(X_{3}=a_{3}\right)
\end{aligned}
$$

- How many numbers do we need to store for three binary random variables in this case? 3 (as opposed to $2^{3}-1=7$ if we encoded the full joint)

Conditional Independence: Simplification 2

- Suppose we instead only assume that:
- $P\left(X_{2}=a_{2} \mid X_{1}=a_{1}, X_{3}=a_{3}\right)=P\left(X_{2}=a_{2} \mid X_{1}=a_{1}\right)$ for all a_{1}, a_{2}, a_{3}.
- This gives the "conditional independence model" X_{2} : is conditionally independent of X_{3} given X_{1}

$$
\begin{aligned}
& P\left(X_{1}=a_{1}, X_{2}=a_{2}, X_{3}=a_{3}\right) \\
& \quad=P\left(X_{1}=a_{1}\right) P\left(X_{3}=a_{3} \mid X_{1}=a_{1}\right) P\left(X_{2}=a_{2} \mid X_{1}=a_{1}, X_{3}=a_{3}\right) \\
& \quad=P\left(X_{1}=a_{1}\right) P\left(X_{3}=a_{3} \mid X_{1}=a_{1}\right) P\left(X_{2}=a_{2} \mid X_{1}=a_{1}\right)
\end{aligned}
$$

- How many numbers do we need to store for three binary random variables in this case?
$1+2+2=5$ (as opposed to $2^{3}-1=7$ if we encoded the full joint)

