COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan

University of Massachusetts at Amherst

Spring 2019

Lecture 26: Markov Chains III

Recap: Discrete Markov Chain

- We consider discrete-time Markov chain, in which the state changes at certain discrete time instances, indexed by an integer variable *t*.
- A discrete Markov chain defines a series of random variables X_t , e.g., $\{X_0, X_1, X_2, \ldots\}$.
- A Markov Chain consists:
 - State space: a set of states in which the chain can be described at time t:

$$S = \{s_1, \ldots, s_k\}$$

► Transition probabilities that describe the probability of transitioning from a state at t - 1 to another state at t:

$$P(X_t = s_j | X_{t-1} = s_i) = p_{ij}$$
 for all $1 \le i, j \le k$

• An initial state X_0 , in which the chain is initiated.

Markov Chain

• Write the **probability distribution** of each X_t as

$$v_t = \langle v_t[1], v_t[2], \dots, v_t[k] \rangle$$

= $\langle P(X_t = s_1), P(X_t = s_2), \dots, P(X_t = s_k) \rangle.$

• If we happen to know the v_t, then we can compute v_{t+1} using the **Total Probability Law**.

$$P(X_{t+1} = s_j) = \sum_i P(X_{t+1} = s_j | X_t = s_i) P(X_t = s_i).$$

or

$$v_{t+1}[j] = \sum_{i} v_t[i] p_{ij}$$

Steady State Distribution

Do all Markov chains have the property that eventually the distribution settles to the "same steady" state regardless of the initial state?

Definition

We have

If we have

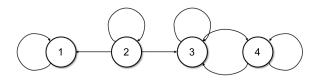
$$oldsymbol{v}[j] = \sum_{i=1}^k p_{ij} oldsymbol{v}[i] ext{ for } j = 1, \cdots, k$$

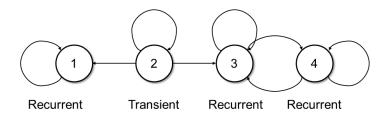
and

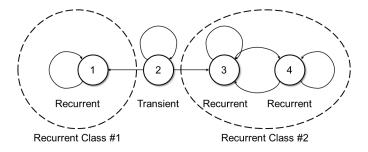
$$\sum_{j=1}^k v[j] = 1$$

Then, we say v is a steady state distribution for the Markov Chain.

- We say that a state *i* is **recurrent** if for every *j* that is accessible from *i*, *i* is also accessible from *j*.
 - Denoting A(i) as a set of states that are accessible from i, for all j that belong to A(i) we have that i belongs to A(j).
- If *i* is a recurrent state, the set of states *A*(*i*) that are accessible from *i* form a **recurrent class**.
 - States in A(i) are all accessible from each other, and no state outside A(i) is accessible from them.
- A state is called **transient** if it is not recurrent.
- A Markov chain with multiple recurrent classes **does not** converges to a unique steady state.







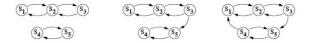
Example

Consider the Markov Chain with transition matrix:

$$A = \left(\begin{array}{rrrrr} 0 & 0.9 & 0.05 & 0.05 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Recurrent States

• **Question**: Which of the following Markov chains have a single recurrent class?



• Answer: Right two chains

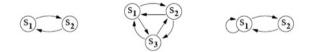
Periodic Recurrent Class

Definition

- Consider a recurrent class.
- Let us group all the states into d disjoint groups of states S_1, \dots, S_d ; a group has to contain at least one state.
- Such a recurrent class is called **periodic** if there exists at least one group (of states) in the chain that is visited with a period of *T*. That is, group(s) are visited at time {*T*, 2*T*, 3*T*, 4*T*,...} steps for *T* ∈ {2, 3, ...}.
- If a recurrent class is not periodic, we call the class aperiodic.

Periodic/Aperiodic Class

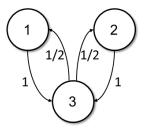
• **Question**: Which of the following Markov chains contain a single periodic recurrent class?



• **Answer**: Only the one to the left (with period of 2).

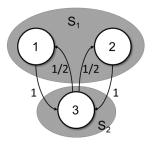
Periodic/Aperiodic Class

• **Question**: Does the following Markov chain contain a single periodic recurrent class?



Periodic/Aperiodic Class

• **Question**: Does the following Markov chains contain a single periodic recurrent class?



• **Answer**: Yes. Group 1 (State 1 and 2) and Group 2 (States 3) occur periodically.

Steady-State Convergence Theorem

Theorem

Consider a Markov chain with a single, aperiodic recurrent class. Then, the states in such a Markov chain have steady-state distribution.

Steady State Distribution Example

• Consider a Markov chain C with 2 states and transition matrix

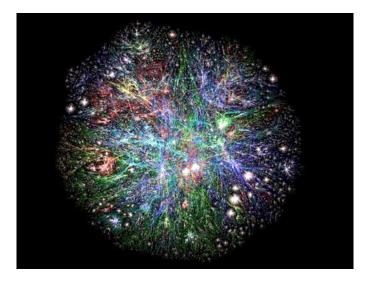
$$A = \left(\begin{array}{ccc} 1-a & a \\ b & 1-b \end{array}\right)$$

for some 0 < a, b < 1

- Does C have a single recurrent class? Yes.
- Is C periodic? No, as long as 0 < a, b < 1
- Then, what is its steady state distribution v?
- Let $\mathbf{v} = (c, 1 c)$ be a steady state distribution.
- Solving $v[j] = \sum_{k=1}^{m} v[k] p_{kj}$ for gives:

$$v^* = \left(\frac{b}{a+b}, \frac{a}{a+b}\right)$$

Example: Web Graph Transition Diagram



Markov Chains: Steady State Applications

- One of the most profitable applications of steady state theory in Markov chains is Google's PageRank Algorithm.
- The states are all possible pages on the web.
- The probability of transitioning from page *i* to page *j* is the fraction of out-going links from page *i* that point to page *j*.
- The steady state distribution tells you the proportion of time someone randomly surfing the web would end up on each page.
- Use this to rank among the pages that match a keyword search.