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Lecture 25: Markov Chains II



Recap: Discrete Markov Chain

• We consider discrete-time Markov chain, in which the state
changes at certain discrete time instances, indexed by an
integer variable t.
• A discrete Markov chain defines a series of random variables

Xt , e.g., {X0, X1, X2, . . .}.
• A Markov Chain consists:

I State space: a set of states in which the chain can be
described at time t:

S = {s1, . . . , sk}

I Transition probabilities that describe the probability of
transitioning from a state at t − 1 to another state at t:

P (Xt = sj |Xt−1 = si ) = pij for all 1 ≤ i , j ≤ k

I An initial state X0, in which the chain is initiated.
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Markov Property

• The key assumption is that the transition probabilities (pij) for
the state at time t + 1 (state j) only depends on the state at
time t (state i).
I The value of Xt+1 only depends on the value of Xt .

• Mathematically, the Markov property defines that

P (Xt+1 = j |Xt = i , Xt−1 = xt−1, · · · , X0 = x0)

= P (Xt+1 = j |Xt = i)

= pij

• The transition probability pij must be non-negative and sum
to 1:

k∑
j=1

pij = 1, for all i .
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Markov Chain

• Write the probability distribution of each Xt as

vt = 〈vt [1], vt [2], . . . , vt [k]〉
= 〈P (Xt = s1) , P (Xt = s2) , . . . , P (Xt = sk)〉.

• If we happen to know the vt , then we can compute vt+1 using
the Total Probability Law.

P (Xt+1 = sj) =
∑

i
P (Xt+1 = sj |Xt = si ) P (Xt = si ) .

or
vt+1[j] =

∑
i

vt [i ]pij
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States with Transition Probabilities

• Weight pij on arrow from state i to state j indicates the
probability of transitioning to state j given we’re in state i .
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• Can work out things like “what’s the probability we’re in state
2 after two steps if we’re currently in state 3.”
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Analyzing Markov Chains via Matrices

• Define Transition probability matrix:

A =


p0,0 p0,1 p0,2 p0,3
p1,0 p1,1 p1,2 p1,3
p2,0 p2,1 p2,2 p2,3
p3,0 p3,1 p3,2 p3,3

 =


1/2 1/2 0 0
1/6 1/2 1/3 0

0 1/3 1/2 1/6
0 0 1/2 1/2


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Simulation of the queue if there is initially one
person

Given

vt =

〈∑
i

pi1vt−1[i],
∑

i

pi2vt−1[i], · · · ,
∑

i

pikvt−1[i]

〉
.

v0 = 〈0.000, 1.000, 0.000, 0.000〉
v1 = 〈0.167, 0.500, 0.333, 0.000〉
v2 = 〈0.167, 0.444, 0.333, 0.056〉
v3 = 〈0.158, 0.416, 0.342, 0.084〉
v4 = 〈0.148, 0.401, 0.352, 0.099〉
v5 = 〈0.142, 0.391, 0.359, 0.109〉
v6 = 〈0.136, 0.386, 0.364, 0.114〉
v7 = 〈0.133, 0.382, 0.368, 0.118〉
v8 = 〈0.130, 0.380, 0.370, 0.120〉

...
...

...
v∞ = 〈0.125, 0.375, 0.375, 0.125〉
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Simulation of the queue if there is initially three
people

v0 = 〈0.000, 0.000, 0.000, 1.000〉
v1 = 〈0.000, 0.000, 0.500, 0.500〉
v2 = 〈0.000, 0.167, 0.500, 0.333〉
v3 = 〈0.028, 0.250, 0.472, 0.251〉
v4 = 〈0.056, 0.296, 0.404, 0.204〉
v5 = 〈0.078, 0.324, 0.423, 0.177〉
v6 = 〈0.093, 0.341, 0.407, 0.159〉
v7 = 〈0.104, 0.353, 0.397, 0.148〉
v8 = 〈0.111, 0.360, 0.389, 0.140〉

...
...

...
v∞ = 〈0.125, 0.375, 0.375, 0.125〉
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Steady State Distribution
Do all Markov chains have the property that eventually the distribution settles to the
“same steady” state regardless of the initial state?

Definition
We have

v = lim
t→∞

vt

〈v [1], v [2], . . . , v [k]〉 = lim
t→∞

〈vt [1], vt [2], . . . , vt [k]〉

If we have

v [j] =
k∑

i=1

pij v [i] for j = 1, · · · , k

and
k∑

j=1

v [j] = 1

Then, we say v is a steady state distribution for the Markov Chain.
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Queuing Example
For the queuing example, we had

P =


1
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
if v = (v [1], v [2], v [3], v [4]) then

v [1] =
v [1]

2
+

v [2]
6

v [2] =
v [1]

2
+

v [2]
2

+
v [3]

3

v [3] =
v [2]

3
+

v [3]
2

+
v [4]

2

v [4] =
v [3]

6
+

v [4]
2

Furthermore,
v [1] + v [2] + v [3] + v [4] = 1

Solving these gives us

v = (0.125, 0.375, 0.375, 0.125)
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Question

• “Most” Markov Chains have a unique steady state distribution
regardless of initial state that is approached by successive
iterations from any starting distributions.
• Question: Under what circumstances do we have a unique

steady state distribution?
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