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Lecture 25: Markov Chains Il



Recap: Discrete Markov Chain

e We consider discrete-time Markov chain, in which the state
changes at certain discrete time instances, indexed by an
integer variable t.

e A discrete Markov chain defines a series of random variables
)(t, e.g., {)(b,)(l,)<2,...}.
e A Markov Chain consists:

» State space: a set of states in which the chain can be
described at time t:

S:{Sl,...75k}

» Transition probabilities that describe the probability of
transitioning from a state at t — 1 to another state at ¢:

P(X: =5 Xeo1 = 5) = py for all 1 <, j < k

» An initial state X, in which the chain is initiated.
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Markov Property

e The key assumption is that the transition probabilities (p;;) for
the state at time t + 1 (state j) only depends on the state at
time t (state 7).

» The value of X;;1 only depends on the value of X;.
e Mathematically, the Markov property defines that

P(Xty1 =j|Xe =i, Xem1 = x¢—1,--- , Xo = x0)
= P (Xet1 = j|Xe = i)

e The transition probability pjj must be non-negative and sum
to 1:

k
Zp,-j =1, for all i.
j=1
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Markov Chain

e Write the probability distribution of each X; as

ve = (ve[1], ve[2], . . ., ve[K])
=(P(Xt=s51),P(Xt =s2),..., P (Xt = sx)).

e If we happen to know the v, then we can compute v; 11 using
the Total Probability Law.

P(Xex1=5)=> P(Xeyr=sj|Xe = 5) P(Xe = s7).

or

verali] = D velilpy

1
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States with Transition Probabilities

e Weight p;; on arrow from state /i to state j indicates the
probability of transitioning to state j given we're in state J.

"] 113 1/6
1/g\@/ . 12
— ™ 16 113 1o ~J
172 12
e Can work out things like “what’s the probability we're in state
2 after two steps if we're currently in state 3.
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Analyzing Markov Chains via Matrices

e Define Transition probability matrix:

Poo POl P02 P03 /2 1/2 0 0
A_ | Pro PL1op2 o ps | 1/6 1/21/3 0
P20 P21 P22 P23 0 1/3 1/2 1/6
P30 P31 P32 P33 0 0 1/2 1)2
1/2 1/3 1/6
N 1 1/3 . ~J
1/2 12

7/12



Simulation of the queue if there is initially one
person

Given

Zpllvt 1[i ]ZPIZVt 1[i], Zplkvt 1]

0.000, 1.000, 0.000, 0.000
0.167,0.500, 0.333, 0.000
0.167,0.444, 0.333, 0.056
0.158,0.416, 0.342, 0.084

w = )
( )
( )
( )
va = (0.148,0.401,0.352,0.099)
( )
( )
( )
( )

vi

V2

v3

%3 0.142,0.391,0.359,0.109
0.136,0.386,0.364,0.114
0.133,0.382,0.368,0.118

0.130,0.380,0.370,0.120

Ve

%] =

Voo = (0.125,0.375,0.375,0.125)
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Simulation of the queue if there is initially three

Vo
Vi
%)
V3
Vg
Vs
Ve
v7

V8

Voo

people

(0.000, 0.000, 0.000, 1.000)
(0.000, 0.000, 0.500, 0.500)
(0.000,0.167, 0.500, 0.333)
(0.028, 0.250, 0.472, 0.251)
(0.056,0.296, 0.404, 0.204)
(0.078,0.324,0.423,0.177)
(0.093,0.341,0.407, 0.159)
(0.104, 0.353,0.397, 0.148)
(0.111,0.360, 0.389, 0.140)

(0.125,0.375,0.375,0.125)
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Steady State Distribution

Do all Markov chains have the property that eventually the distribution settles to the
“same steady” state regardless of the initial state?

Definition
We have
v= lim v
(v[1],v[2],. .., v[k]) = tl_i)n;Q(vdl], ve[2], ..., ve[K])
If we have
k
v[j] :ZPUV[I'] forj=1,---,k
i=1
and
k
> vi=1
j=1

Then, we say v is a steady state distribution for the Markov Chain.
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Queuing Example

For the queuing example, we had

O Ol
O WIHNHN =
NI=N-WI= O
NiFoI= O O

if v = (v[1], v[2], v[3], v[4]) then

Furthermore,

Solving these gives us

vy | vi2] | vi3]
BPl= g
W,
Tty
Vi3l |, vi4]
6 T2

v[3] =

v[4] =

v[1] + v[2] + v[3] + v[4] =1

v = (0.125,0.375,0.375,0.125)
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Question

e "Most” Markov Chains have a unique steady state distribution
regardless of initial state that is approached by successive
iterations from any starting distributions.

e Question: Under what circumstances do we have a unique
steady state distribution?
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