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Lecture 24: Markov Chains
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Life without Google
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PageRank

How can one rank the Web pages according to its relevance to a
search query?

Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd, Terry (1999)
The PageRank Citation Ranking: Bringing Order to the Web. Technical Report.
Stanford InfoLab.
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PageRank
An important page has many links to it and can be reached easily.
PageRank, which is the stationary vector of an enormous Markov chain, is the driving
force behind Google’s success in ranking webpages.
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Cryptography

Stanford’s Statistics Department has a drop-in consulting service.
One day, a psychologist from the state prison system showed up
with a collection of coded messages.
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Cryptography

Stanford’s Statistics Department has a drop-in consulting service.
One day, a psychologist from the state prison system showed up
with a collection of coded messages. What could be a feasible way
to decode the passage?
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Cryptography

Stanford’s Statistics Department has a drop-in consulting service.
One day, a psychologist from the state prison system showed up
with a collection of coded messages. Suppose the first symbol
corresponds to ”A”. What is the probability that the next symbol is
A/B/C/..../Z?
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Markov Chain

• We learned discrete random variables, such as the Bernoulli
and Poisson, that are memoryless.
• That is, each event is identical and independent – current

event is independent from the history (memory) of previous
events.
• We now consider scenarios where the future depends on past

only through present!
• The condition of the future is summarized by a state, which

changes over time according to given probabilities.
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Markov Chain

More Examples:
• Whether you would understand the content of the next class

only depends on whether you understand the concept in
today’s class.
• Performance of a person’s daily activity (e.g., driving, walking,

cooking, eating, walking) at time t depends on the activity at
t − 1.
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Discrete Markov Chain

• We consider discrete-time Markov chain, in which the state
changes at certain discrete time instances, indexed by an
integer variable t.
• A discrete Markov chain defines a series of random variables

Xt , e.g., {X0, X1, X2, . . .}.
• A Markov Chain consists:

I State space: a set of states in which the chain can be
described at time t:

S = {s1, . . . , sk}

I Transition probabilities that describe the probability of
transitioning from a state at t − 1 to another state at t:

P (Xt = sj |Xt−1 = si ) = pij for all 1 ≤ i , j ≤ k

I An initial state X0, in which the chain is initiated.
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Markov Property

• The key assumption is that the transition probabilities (pij) for
the state at time t + 1 (state j) only depends on the state at
time t (state i).
I The value of Xt+1 only depends on the value of Xt .

• Mathematically, the Markov property defines that

P (Xt+1 = j |Xt = i , Xt−1 = xt−1, · · · , X0 = x0)

= P (Xt+1 = j |Xt = i)

= pij

• The transition probability pij must be non-negative and sum
to 1:

k∑
j=1

pij = 1, for all i .
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Transition Probability Graph

A Markov chain can be described using transition probability
graph, whose nodes are the states and whose arrows are the
possible transitions (with probabilities).
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• Example: Ivan is a student who has three emotions: 1)
neutral, 2) sad, and 3) happy.
• If he is neutral at a give time t, he will be neutral with a

probability of 0.8, sad with a probability of 0.1, and happy
with a probability of 0.1 at time t + 1.
• If he is sad at t, he will be sad with a probability of 0.5,

neural with 0.4, and happy with 0.1.
• If he is happy at t, he will be happy with a probability of 0.5,

neural with 0.4, and sad with 0.1.
• Draw the probability transition graph.
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Transition Probability Graph

• Weights on arrows out of each state i sum to one:
∑

j
pij = 1
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Analyzing the Queue at Amherst Coffee

• Consider a queue at Amherst Coffee
• Every minute, someone joins the queue. . .

I With probability 1 if the queue has length 0
I With probability 2/3 if the queue has length 1
I With probability 1/3 if the queue has length 2
I With probability 0 if the queue has length 3.

• Every minute, the server serves a customer with probability
1/2.

Suppose there is one person in line at noon. How many people
might be in line at 12:10pm?
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States

• Let Xt be the number of people in the queue at time t
• At any given time t, the queue is in one of four states: either

there are 0, 1, 2, or 3 people in the queue.
• Arrows indicate that it is possible to move from one state to

the next at each step.

0 1 2 3
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States with Transition Probabilities

• Weight pij on arrow from state i to state j indicates the
probability of transitioning to state j given we’re in state i .
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• Question: If we’re in state 2, what’s the probability we’re in state 3 after one
step: A) 1, B) 1/2, C) 1/6, D) 0, E) 1/3.
Answer: C) 1/6.

• Question: If we’re in state 2, what’s the probability we’re in state 2 after two
steps: A) 1/3, B) 4/9, C) 1/4, D) 1/12, E) 1/9.
Answer: B) 4/9.
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States with Transition Probabilities

• Weight pij on arrow from state i to state j indicates the
probability of transitioning to state j given we’re in state i .

i pi (join) pi (not join) pi (served) pi (not served)
0 1 0 1/2 1/2
1 2/3 1/3 1/2 1/2
2 1/3 2/3 1/2 1/2
3 0 1 1/2 1/2

pij =

pi (not join) · pi (served) , j = i − 1
pi (join) · pi (served) + pi (not join) · pi (not served) , j = i
pi (join) · pi (not served) , j = i + 1

p10 = p1(not join) · p1(served) = 1/3 · 1/2 = 1/6
p11 = p1(join) · p1(served) + p1(not join) · p1(not served) = 2/3 · 1/2 + 1/3 · 1/2 = 1/2
p12 = p1(join) · p1(not served) = 2/3 · 1/2 = 1/3
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What if the current state is uncertain?

• What if we don’t know Xt−1, but know P (Xt−1 = i) for each
i , what’s P (Xt = j)?
• Then, by the Law of Total Probability:

P (Xt = j) =
∑

i
P (Xt = j , Xt−1 = i)

=
∑

i
P (Xt = j |Xt−1 = i) P (Xt−1 = i)

=
∑

i
pijP (Xt−1 = i)

• Question: If there’s a 1/3 probability we’re in state 1 and a
2/3 probability we’re in state 3, what’s the probability we’re in
state 2 after one step.
A) 1/3, B) 1/4, C) 4/9, D) 7/9, E) 1/9.
Ans: C) 4/9.
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Markov Chain Theorem

Theorem
We define the distribution of Xt as

vt = 〈vt [1], vt [2], · · · , vt [k]〉
= 〈P (Xt = 1) , P (Xt = 2) , . . . , P (Xt = k)〉 .

where

vt [j] = P (Xt = j)

=
∑

i

P (Xt = j|Xt−1 = i) P (Xt−1 = i)

=
∑

i

pij vt−1[i].

Thus,

vt =

〈∑
i

pi1vt−1[i],
∑

i

pi2vt−1[i], · · · ,
∑

i

pik vt−1[i]

〉
.
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Markov Chain Theorem
This implies that if we know the distribution at t = 0 (i.e., v0), then we can
compute any vt where t > 0:

v1 =

〈∑
i

pi1v0[i ],
∑

i

pi2v0[i ], · · · ,
∑

i

pikv0[i ]

〉
.

v2 =

〈∑
i

pi1v1[i ],
∑

i

pi2v1[i ], · · · ,
∑

i

pikv1[i ]

〉
.

v3 =

〈∑
i

pi1v2[i ],
∑

i

pi2v2[i ], · · · ,
∑

i

pikv2[i ]

〉
.

...

vt =

〈∑
i

pi1vt−1[i ],
∑

i

pi2vt−1[i ], · · · ,
∑

i

pikvt−1[i ]

〉
.
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Markov Chain Theorem

• This theorem can be effectively represented using matrices, but it
requires knowledge about linear algebra.

• To give you a short overview, a Markov chain model can be encoded
in a transition probability matrix. Make sure that you remember
the following notation:

A =


p1,1 p1,2 · · · p1,k
p2,1 p2,2 · · · p2,k

...
...

. . .
...

pk,1 pk,2 · · · pk,k


• Markov Chain Theorem: Given v0, we can compute v1 = v0A, and

vt = vt−1A = vt−2AA = vt−3AAA = . . . = v0At
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