COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan

University of Massachusetts at Amherst

Spring 2019

Lecture 23: Game Theory III

Zero-Sum Games

Definition

A two-player zero-sum game consists of a set of actions A_i for Player P_i and A_j for Player P_j , where each strategy profile $a \in A_i \times A_j$ has the payoff function $u_1(a) + u_2(a) = 0$. For two-finger Morra, the payoff matrix is

	1 B Finger	2 B Finger
1 A Finger	+2, -2	-3, +3
2 A Finger	-3,+3	+4, -4

This game is a zero-sum game.

Pure Strategies vs. Mixed Strategies

- **Pure Strategy**: Players choose a strategy to select a single action and play it so far we have considered this scenario.
- **Mixed Strategy**: Players randomize over the set of available actions according to some probability distribution a player randomizes and mixes between different actions.

Zero-Sum Games

For two-finger Morra, the payoff matrix is

	1 B Finger	2 B Finger
1 A Finger	+2, -2	-3, +3
2 A Finger	-3,+3	+4, -4

And there exists no clear Nash Equilibrium when we consider pure strategies.

But, remember that

Theorem (Nash)

Every game where each player has a finite number of options, has at least one Nash equilibrium.

If no equilibrium exists in pure strategies, one must exist in **mixed** strategies.

Hawks and Doves

• Previous discussed hawks and doves example with the following payoff matrix have both the 1) pure strategy and 2) mixed strategy Nash equilibrium

	B is a Hawk	B is a Dove
A is a Hawk	-25, -25	50,0
A is a Dove	0,50	15, 15

- A plays hawk and B plays Dove (or vice versa) is a pure-strategy Nash equilibrium.
- A and B play hawks with p = q = 7/12 is a mixed-strategy Nash equilibrium.
- The three Nash equilibira can be summarized as

•
$$p = 0$$
 and $q = 1$ (Pure Strategy)

• p = 7/12 and q = 7/12 (Mixed Strategy)

Example

Consider the following payoff matrix

	Left	Right
Up	+3, -3	-2, +2
Down	-1, +1	0,0

- Is there a pure-strategy Nash equilibrium?
 No.
- Is this a zero-sum game?

Yes.

• Find a mixed-strategy Nash equilibrium?

▶ p = 1/6 and q = 1/3.

Example: Three-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in \{1, 2, 3\}$ and Bob picks $b \in \{1, 2, 3\}$
- Bob pays Alice (a + b) if a + b is even
- Alice pays Bob (a + b) if a + b is odd
- The payoff matrix is

	1 B Finger	2 B Finger	3 B Finger
1 A Finger	+2, -2	-3, +3	+4, -4
2 A Finger	-3,+3	+4, -4	-5, +5
3 A Finger	+4, -4	-5, +5	+6, -6

Analysis of Three-finger Morra (1/2)

- Suppose B plays "1" with probability *r*, "2" with probability *s*, and "3" with probability 1 − *r* − *s*
- If A plays "1" then A's expected reward is

$$2r - 3s + 4(1 - r - s) = 4 - 2r - 7s$$

• If A plays "2" then A's expected reward is

$$-3r + 4s - 5(1 - r - s) = -5 + 2r + 9s$$

• If A plays "3" then A's expected reward is

$$4r - 5s + 6(1 - gr - s) = 6 - 2r - 11s$$

• Hence, for r = 1/4, s = 1/2, A gets expected return of 0

Analysis of Three-finger Morra (2/2)

- Suppose A plays "1" with probability t, "2" with probability u, and "3" with probability 1 t u
- If B plays "1" then B's expected reward is

$$-2t + 3u - 4(1 - t - u) = -4 + 2t + 7u$$

• If B plays "2" then B's expected reward is

$$3t - 4u + 5(1 - t - u) = 5 - 2t - 9u$$

• If B plays "3" then B's expected reward is

$$-4t + 5u - 6(1 - t - u) = -6 + 2t + 11u$$

• Hence, for t = 1/4, u = 1/2, B gets expected return of 0

In sum, both players show one finger with prob. 1/4 and two fingers with prob. 1/2 is a mixed-strategy Nash equilibrium.

Zero-Sum Games

For two-finger Morra, the payoff matrix is

	1 B Finger	2 B Finger
1 A Finger	+2, -2	-3, +3
2 A Finger	-3,+3	+4, -4

We computed the mixed-strategy Nash equilibrium when p = q = 7/12. **Question**: In a zero-sum game, is a Nash equilibrium the strategy that maximizes the players reward?

Analysis of Two-finger Morra

• Suppose Bob randomizes his action by playing "1" with probability q and "2" with probability 1 - q

$$P(B = 1) = q$$
 and $P(B = 2) = 1 - q$.

If Alice plays "1" then Alice has expected payoff

$$2q - 3(1 - q) = 5q - 3$$

• If Alice plays "2" then Alice has expected payoff

$$-3q + 4(1 - q) = 4 - 7q$$

- Then, how should Alice play to maximize her expected reward if she knows the value of *q*?
- She will choose a pure strategy that will yield the better reward.

Analysis of Two-finger Morra

