COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan
University of Massachusetts at Amherst

Spring 2019

Lecture 23: Game Theory III

Zero-Sum Games

Definition

A two-player zero-sum game consists of a set of actions A_{i} for Player P_{i} and A_{j} for Player P_{j}, where each strategy profile $a \in A_{i} \times A_{j}$ has the payoff function $u_{1}(a)+u_{2}(a)=0$.
For two-finger Morra, the payoff matrix is

	1 B Finger	2 B Finger
1 A Finger	$+2,-2$	$-3,+3$
2 A Finger	$-3,+3$	$+4,-4$

This game is a zero-sum game.

Pure Strategies vs. Mixed Strategies

- Pure Strategy: Players choose a strategy to select a single action and play it - so far we have considered this scenario.
- Mixed Strategy: Players randomize over the set of available actions according to some probability distribution - a player randomizes and mixes between different actions.

Zero-Sum Games

For two-finger Morra, the payoff matrix is

	1 B Finger	2 B Finger
1 A Finger	$+2,-2$	$-3,+3$
2 A Finger	$-3,+3$	$+4,-4$

And there exists no clear Nash Equilibrium when we consider pure strategies.
But, remember that
Theorem (Nash)
Every game where each player has a finite number of options, has at least one Nash equilibrium.
If no equilibrium exists in pure strategies, one must exist in mixed strategies.

Hawks and Doves

- Previous discussed hawks and doves example with the following payoff matrix have both the 1) pure strategy and 2) mixed strategy Nash equilibrium

	B is a Hawk	B is a Dove
A is a Hawk	$-25,-25$	50,0
A is a Dove	0,50	15,15

- A plays hawk and B plays Dove (or vice versa) is a pure-strategy Nash equilibrium.
- A and B play hawks with $p=q=7 / 12$ is a mixed-strategy Nash equilibrium.
- The three Nash equilibira can be summarized as
- $p=0$ and $q=1$ (Pure Strategy)
- $p=1$ and $q=0$ (Pure Strategy)
- $p=7 / 12$ and $q=7 / 12$ (Mixed Strategy)

Example

Consider the following payoff matrix

	Left	Right
Up	$+3,-3$	$-2,+2$
Down	$-1,+1$	0,0

- Is there a pure-strategy Nash equilibrium?
- No.
- Is this a zero-sum game?
- Yes.
- Find a mixed-strategy Nash equilibrium?
- $p=1 / 6$ and $q=1 / 3$.

Example: Three-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in\{1,2,3\}$ and Bob picks $b \in\{1,2,3\}$
- Bob pays Alice $\$(a+b)$ if $a+b$ is even
- Alice pays Bob $\$(a+b)$ if $a+b$ is odd
- The payoff matrix is

	1 B Finger	2 B Finger	3 B Finger
1 A Finger	$+2,-2$	$-3,+3$	$+4,-4$
2 A Finger	$-3,+3$	$+4,-4$	$-5,+5$
3 A Finger	$+4,-4$	$-5,+5$	$+6,-6$

Analysis of Three-finger Morra (1/2)

- Suppose B plays " 1 " with probability r, " 2 " with probability s, and " 3 " with probability $1-r-s$
- If A plays " 1 " then A's expected reward is

$$
2 r-3 s+4(1-r-s)=4-2 r-7 s
$$

- If A plays " 2 " then A's expected reward is

$$
-3 r+4 s-5(1-r-s)=-5+2 r+9 s
$$

- If A plays " 3 " then A's expected reward is

$$
4 r-5 s+6(1-g r-s)=6-2 r-11 s
$$

- Hence, for $r=1 / 4, s=1 / 2$, A gets expected return of 0

Analysis of Three-finger Morra (2/2)

- Suppose A plays " 1 " with probability t, " 2 " with probability u, and " 3 " with probability $1-t-u$
- If B plays " 1 " then B's expected reward is

$$
-2 t+3 u-4(1-t-u)=-4+2 t+7 u
$$

- If B plays " 2 " then B's expected reward is

$$
3 t-4 u+5(1-t-u)=5-2 t-9 u
$$

- If B plays " 3 " then B's expected reward is

$$
-4 t+5 u-6(1-t-u)=-6+2 t+11 u
$$

- Hence, for $t=1 / 4, u=1 / 2$, B gets expected return of 0 In sum, both players show one finger with prob. $1 / 4$ and two fingers with prob. $1 / 2$ is a mixed-strategy Nash equilibrium.

Zero-Sum Games

For two-finger Morra, the payoff matrix is

	1 B Finger	2 B Finger
1 A Finger	$+2,-2$	$-3,+3$
2 A Finger	$-3,+3$	$+4,-4$

We computed the mixed-strategy Nash equilibrium when
$p=q=7 / 12$.
Question: In a zero-sum game, is a Nash equilibrium the strategy that maximizes the players reward?

Analysis of Two-finger Morra

- Suppose Bob randomizes his action by playing " 1 " with probability q and " 2 " with probability $1-q$

$$
P(B=1)=q \text { and } P(B=2)=1-q .
$$

- If Alice plays " 1 " then Alice has expected payoff

$$
2 q-3(1-q)=5 q-3
$$

- If Alice plays " 2 " then Alice has expected payoff

$$
-3 q+4(1-q)=4-7 q
$$

- Then, how should Alice play to maximize her expected reward if she knows the value of q ?
- She will choose a pure strategy that will yield the better reward.

$$
\max (5 q-3,4-7 q)
$$

Analysis of Two-finger Morra

