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Lecture 20: Central limit theorem &
The strong law of large numbers



Markov and Chebyshev Bounds

• Markov Bound
I Informally: If a nonnegative RV has a small mean, then the

probability that this RV takes a large value must also be small.
I Formally: For a non-negative random variable X ,

P(X ≥ a) ≤ E (X )
a

• Chebyshev Bound
I Informally: If a RV has small variance, then the probability

that it takes a value far from its mean is also small. Note that
the Chebyshev inequality does not require the random variable
to be nonnegative.

I Formally: For a random variable X ,

P(|X − E (X )| ≥ c) ≤ Var(X )
c2
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The Weak Law of Large Numbers

• Informally: If n is large, the bulk of the distribution of the
sample mean (Xn) of a sequence of i.i.d. with mean µ and
variance σ2 will converge to (be concentrated around) µ.
• Formally: Let X1,X2, · · · be a sequence of i.i.d. (either

discrete or continuous) random variable with mean µ. For
every ε > 0, we have

P
(
|Xn − µ| ≥ ε

)
→ 0 as n→∞.
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Convergence in probability

• Let Y1,Y 2, . . . be a sequence of random variables (not
necessarily independent), and let a be a real number.
• We say that the sequence Yn converges to a in probability,

if for every ε > 0, we have

lim
n→∞

P(|Yn − a| ≥ ε) = 0

• Put it another way: ∀ε, δ > 0,∃n0 such that ∀n ≥ n0

P(|Yn − a| ≥ ε) ≤ δ

Our measurement is accurate, with this much confidence.
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The Strong Law of Large Numbers

• Let X1,X2, · · · be a sequence of i.i.d. (either discrete or
continuous) random variable with mean µ and variance σ2.
• Then, the sequence of sample mean Xn converges to µ as

n→∞, with probability 1:

P
(

lim
n→∞

Xn = µ
)

= 1.

• Its sample mean Xn, which is a RV, will converge to the true
mean µ, which is a constant, with a probability 1 when we
have an infinitely large sample size.
I More specifically, an event of X n = µ has a probability of 1.

• Example: Let Xi ∼ Bern(p), then

P
(

lim
n→∞

1
n

n∑
i=1

Xi = p
)

= 1.
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The Central Limit Theorem

• The LLN states that Xn converges to µ when n is large.
I The distribution of the sample mean X n is concentrated

around µ.
• But what does the distribution of Xn look like?
• The Central Limit Theorem can define this.
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The Central Limit Theorem

• Let us define a variable by normalizing Xn with its mean and
standard deviation
I In the same manner as we normalized a Normal RV to derive

the Standard Normal RV.

Zn = Xn − µ
σ√
n

or equivalently

Zn = X1 + · · ·+ Xn − nµ
σ
√

n

• Then, the PDF of Zn converges to the standard normal PDF
as n→∞

Zn ∼ N(0, 1) as n→∞
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The Central Limit Theorem

• The CLT is surprisingly general and extremely powerful.
• It states that Xi can have any forms of (discrete, continuous,

or a mixture) probability distribution, but its sample mean
converges to a Standard Normal distribution as n becomes
large.
• Conceptually, this is important as it indicates that the sum of

a large number of i.i.d RV is approximately normal.
• Practically, this is important as it eliminates the need for

detailed probabilistic models as long as we have a large
sample size. We can still approximate its sample mean using
the Standard Normal distribution as long as we know µ and σ.
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The Central Limit Theorem

• Let us run a simulation to see if this work!
• Consider a continuous exponential RV whose λ = 0.01
• Sampling distribution of Xn when n = 2
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The Central Limit Theorem

• Let us run a simulation to see if this work!
• Consider a continuous exponential RV whose λ = 0.01
• Sampling distribution of Xn when n = 4
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The Central Limit Theorem

• Let us run a simulation to see if this work!
• Consider a continuous exponential RV whose λ = 0.01
• Sampling distribution of Xn when n = 20
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The Central Limit Theorem

• Let us run a simulation to see if this work!
• Consider a continuous exponential RV whose λ = 0.01
• Sampling distribution of Xn when n = 100
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Example

• Question: Suppose salaries at a very large company have a
mean of $62,000 and a standard deviation of $32,000.
• If a single employee is randomly selected, what is the

probability that his/her salary exceeds $66,000?
• Solution: We cannot solve this problem since we do not have

the true distribution function of the salaries.
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Example

• Question: Suppose salaries at a very large company have a
mean of $62,000 and a standard deviation of $32,000.
• If 100 employees are randomly selected, what is the

probability that their average salary exceeds $66,000?
• Solution:

I We define a new random variable

Z = X n − µ
σ√
n

Then,

P(X n > 66000) = P
(

Z >
66000− 62000

32000√
100

)
= P(Z > 1.25)
= 1− Φ(1.25)
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