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Lecture 2: Probability



Recap: Sets

• A set is a collection of objects, which are the elements of the
set

• x ∈ S , x /∈ S , empty set ∅, number of elements in a set |S |
• Subset: S ⊂ T

• Universal set Ω, set complement: Sc = {x ∈ Ω|x /∈ S}
• Set union S ∪ T = {x |x ∈ S or x ∈ T}, intersection
S ∩ T = {x |x ∈ S and x ∈ T}
• Power Set: Set of all subsets

• Disjoint sets S ∩ T = ∅
• Partition of a set: Si and Sj are disjoint for any i 6= j and

S1 ∪ S2 ∪ · · · ∪ Sn = S



Model of Probability

A probabilistic model is a mathematical description of an uncertain
situation. Two fundamental elements of a probabilistic model are

• Sample Space Ω: all possible outcomes of an experiment

• Probability Law:
A ⊂ Ω; P(A),

where A is an event (a set of possible outcomes) and

P(A) is a non-negative number presenting the likelihood of
observing the event A.

Probabilistic model involves an experiment, which produces an event
from the sample space.
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Example

Consider the dice problem. What are the

• Experiment:

• Sample Space:

• Possible Outcomes:



Probability Laws

• Probability represents likelihood of any outcomes or of any set
of possible outcomes.

• The probability law assigns to every event A, a number P(A),
call the probability of A.



Axioms of Probability

• Nonnegativity:
P(A) ≥ 0

• Additivity: For any two disjoint sets A and B,

P(A ∪ B) = P(A) + P(B)

Holds for infinitely many disjoints events A1,A2,A3, . . .

P(∪iAi ) =
∑
i

P(Ai ).

• Normalization:
P(Ω) = 1



That’s all we need

Question:

• What is P(∅)?

• Can you show that P(Ac) = 1− P(A)?

• If A ⊂ B, then show that P(A) ≤ P(B).

• Show that P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

• Sub-additivity: P(A ∪ B) ≤ P(A) + P(B)



Discrete Probability Models

If Ω consists of a finite number of possible outcomes, we are
dealing with discrete probability models.
For example,

• Coin Toss

• Dice Rolling

What could be Non-Discrete Probability Models?
For discrete probabilistic models, the probability law is specified by
the probabilities of the events that consists of a single element
(that are disjoint by nature).

A = {s1, s2, . . . , sn} ⊂ Ω

P(Ω) = P({s1, s2, ..., sn}) = P(s1) + P(s2) + ... + P(sn)
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Example: Single Coin Toss

Consider an experiment involving a single coin toss.
The sample space (all possible outcomes) is

Ω = {H,T}

All possible events that can occur include

{H}, {T}

Assuming a fair coin, the associated probability of each event is

P({H}) = 0.5

P({T}) = 0.5

Verify that the axioms of probability are satisfied!
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Recap: Axioms of Probability

• Nonnegativity:

P(A) ≥ 0 and P(B) ≥ 0

• Additivity: For any two disjoint sets A and B,
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Example: Two Coin Tosses

Now consider an experiment involving two coin tosses.
The sample space (all possible outcomes) is

Ω = {HH,HT ,TH,TT}

Assuming a fair coin, the associated probability of each outcome is

P({HH}) = 0.25

P({HT}) = 0.25

P({TH}) = 0.25

P({TT}) = 0.25

Define an event A to observe exactly one head. Then, P(A) is

P(A) = 0.5

Now, define an event B to observe no head. Then, P(B) is

P(B) = 0.25
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Uniform Discrete Model

If Ω is finite and all possible outcomes are equally likely, it is a
uniform discrete model. Then, the probability of each element of
Ω has the probability of

1

|Ω|
More generally, ∀A ⊂ Ω

P(A) =
|A|
|Ω|



Uniform Discrete Model - Example

Throwing a fair die is an example of a uniform discrete model.
Ω = {1, 2, 3, 4, 5, 6} Uniform model:

P({i}) =
1

|Ω|
=

1

6

for i = 1, 2, 3, 4, 5, 6.
A: even number shows up

A =

{2, 4, 6}

|A| = 3

P(A) =
|A|
|Ω|

=
3

6
=

1

2
.
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Conditional Probabilities

Conditional probability provides us with a way to reason about the
outcome of an experiment based on partial information or
observations.

Consider rolling a fair die. What is the probability that the outcome
is 6 given that we know that the outcome is an even number.

• Suppose that you rolled a die while blindfolding yourself. Your
friend next to you told you that the number is even. Does
that change your probability space?

We can express this conditional probability using P(A|B):
conditional probability of A given B, where P(B) > 0.
In the above example,

• A = { The outcome is 6 }
• B = { The outcome is an even number }
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Conditional Probabilities

• A new probability space to be defined.

• The universe (sample space) has been changed to B

• The probability has now to be normalized by P(B)



New probability space P(·|B)

What is the probability of outcome is 6, given that the outcome is
even?

P( the outcome is 6| the outcome is even ) =
1

3
.

Why?
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New probability space P(·|B)

Definition of conditional probability,

P(A|B) =
P(A ∩ B)

P(B)

(=)
|A ∩ B|
|B|

.

Another example: What is the probability that the outcome is
odd, given that the outcome is greater than 1.
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New probability space P(·|B)

• If A and B are disjoint, i.e., A ∩ B = ∅, then P(A|B) = 0.
Why?

I In the case of disjoint A and B, A ∩ B = ∅.
I Which means, P(A ∩ B) = 0. So P(A|B) = 0.

• Can you think of two disjoint events in the experiment of two
coin tosses?
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