COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon
University of Massachusetts at Amherst

Spring 2019

Lecture 2: Probability

Recap: Sets

- A set is a collection of objects, which are the elements of the set
- $x \in S, x \notin S$, empty set \emptyset, number of elements in a set $|S|$
- Subset: $S \subset T$
- Universal set Ω, set complement: $S^{c}=\{x \in \Omega \mid x \notin S\}$
- Set union $S \cup T=\{x \mid x \in S$ or $x \in T\}$, intersection $S \cap T=\{x \mid x \in S$ and $x \in T\}$
- Power Set: Set of all subsets
- Disjoint sets $S \cap T=\emptyset$
- Partition of a set: S_{i} and S_{j} are disjoint for any $i \neq j$ and $S_{1} \cup S_{2} \cup \cdots \cup S_{n}=S$

Model of Probability

A probabilistic model is a mathematical description of an uncertain situation. Two fundamental elements of a probabilistic model are

- Sample Space Ω : all possible outcomes of an experiment

Model of Probability

A probabilistic model is a mathematical description of an uncertain situation. Two fundamental elements of a probabilistic model are

- Sample Space Ω : all possible outcomes of an experiment
- Probability Law:

$$
A \subset \Omega ; \quad P(A),
$$

where A is an event (a set of possible outcomes) and $P(A)$ is a non-negative number presenting the likelihood of observing the event A.

Probabilistic model involves an experiment, which produces an event from the sample space.

Example

Consider the dice problem. What are the

- Experiment:
- Sample Space:
- Possible Outcomes:

Probability Laws

- Probability represents likelihood of any outcomes or of any set of possible outcomes.
- The probability law assigns to every event A, a number $P(A)$, call the probability of A.

Axioms of Probability

- Nonnegativity:

$$
P(A) \geq 0
$$

- Additivity: For any two disjoint sets A and B,

$$
P(A \cup B)=P(A)+P(B)
$$

Holds for infinitely many disjoints events $A_{1}, A_{2}, A_{3}, \ldots$

$$
P\left(\cup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

- Normalization:

$$
P(\Omega)=1
$$

That's all we need

Question:

- What is $P(\emptyset)$?
- Can you show that $P\left(A^{c}\right)=1-P(A)$?
- If $A \subset B$, then show that $P(A) \leq P(B)$.
- Show that $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Sub-additivity: $P(A \cup B) \leq P(A)+P(B)$

Discrete Probability Models

If Ω consists of a finite number of possible outcomes, we are dealing with discrete probability models.
For example,

Discrete Probability Models

If Ω consists of a finite number of possible outcomes, we are dealing with discrete probability models.
For example,

- Coin Toss
- Dice Rolling

Discrete Probability Models

If Ω consists of a finite number of possible outcomes, we are dealing with discrete probability models.
For example,

- Coin Toss
- Dice Rolling

What could be Non-Discrete Probability Models?

Discrete Probability Models

If Ω consists of a finite number of possible outcomes, we are dealing with discrete probability models.
For example,

- Coin Toss
- Dice Rolling

What could be Non-Discrete Probability Models?
For discrete probabilistic models, the probability law is specified by the probabilities of the events that consists of a single element (that are disjoint by nature).

$$
\begin{gathered}
A=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subset \Omega \\
P(\Omega)=P\left(\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}\right)=P\left(s_{1}\right)+P\left(s_{2}\right)+\ldots+P\left(s_{n}\right)
\end{gathered}
$$

Example: Single Coin Toss

Consider an experiment involving a single coin toss.
The sample space (all possible outcomes) is

Example: Single Coin Toss

Consider an experiment involving a single coin toss. The sample space (all possible outcomes) is

$$
\Omega=\{H, T\}
$$

All possible events that can occur include

Example: Single Coin Toss

Consider an experiment involving a single coin toss.
The sample space (all possible outcomes) is

$$
\Omega=\{H, T\}
$$

All possible events that can occur include

$$
\{H\},\{T\}
$$

Assuming a fair coin, the associated probability of each event is

Example: Single Coin Toss

Consider an experiment involving a single coin toss.
The sample space (all possible outcomes) is

$$
\Omega=\{H, T\}
$$

All possible events that can occur include

$$
\{H\},\{T\}
$$

Assuming a fair coin, the associated probability of each event is

$$
\begin{aligned}
& P(\{H\})=0.5 \\
& P(\{T\})=0.5
\end{aligned}
$$

Verify that the axioms of probability are satisfied!

Recap: Axioms of Probability

- Nonnegativity:

$$
P(A) \geq 0 \text { and } P(B) \geq 0
$$

- Additivity: For any two disjoint sets A and B,

$$
P(A \cup B)=P(A)+P(B)
$$

- Normalization:

$$
P(\Omega)=P(A)+P(B)=1
$$

Example: Two Coin Tosses

Now consider an experiment involving two coin tosses.
The sample space (all possible outcomes) is

Example: Two Coin Tosses

Now consider an experiment involving two coin tosses.
The sample space (all possible outcomes) is

$$
\Omega=\{H H, H T, T H, T T\}
$$

Assuming a fair coin, the associated probability of each outcome is

Example: Two Coin Tosses

Now consider an experiment involving two coin tosses.
The sample space (all possible outcomes) is

$$
\Omega=\{H H, H T, T H, T T\}
$$

Assuming a fair coin, the associated probability of each outcome is

$$
\begin{aligned}
& P(\{H H\})=0.25 \\
& P(\{H T\})=0.25 \\
& P(\{T H\})=0.25 \\
& P(\{T T\})=0.25
\end{aligned}
$$

Define an event A to observe exactly one head. Then, $P(A)$ is

Example: Two Coin Tosses

Now consider an experiment involving two coin tosses.
The sample space (all possible outcomes) is

$$
\Omega=\{H H, H T, T H, T T\}
$$

Assuming a fair coin, the associated probability of each outcome is

$$
\begin{aligned}
& P(\{H H\})=0.25 \\
& P(\{H T\})=0.25 \\
& P(\{T H\})=0.25 \\
& P(\{T T\})=0.25
\end{aligned}
$$

Define an event A to observe exactly one head. Then, $P(A)$ is

$$
P(A)=0.5
$$

Now, define an event B to observe no head. Then, $P(B)$ is

Example: Two Coin Tosses

Now consider an experiment involving two coin tosses.
The sample space (all possible outcomes) is

$$
\Omega=\{H H, H T, T H, T T\}
$$

Assuming a fair coin, the associated probability of each outcome is

$$
\begin{aligned}
& P(\{H H\})=0.25 \\
& P(\{H T\})=0.25 \\
& P(\{T H\})=0.25 \\
& P(\{T T\})=0.25
\end{aligned}
$$

Define an event A to observe exactly one head. Then, $P(A)$ is

$$
P(A)=0.5
$$

Now, define an event B to observe no head. Then, $P(B)$ is

$$
P(B)=0.25
$$

Uniform Discrete Model

If Ω is finite and all possible outcomes are equally likely, it is a uniform discrete model. Then, the probability of each element of
Ω has the probability of

$$
\frac{1}{|\Omega|}
$$

More generally, $\forall A \subset \Omega$

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Uniform Discrete Model - Example

Throwing a fair die is an example of a uniform discrete model. $\Omega=\{1,2,3,4,5,6\}$ Uniform model:

$$
P(\{i\})=\frac{1}{|\Omega|}=\frac{1}{6}
$$

for $i=1,2,3,4,5,6$.
A : even number shows up

$$
A=
$$

Uniform Discrete Model - Example

Throwing a fair die is an example of a uniform discrete model. $\Omega=\{1,2,3,4,5,6\}$ Uniform model:

$$
P(\{i\})=\frac{1}{|\Omega|}=\frac{1}{6}
$$

for $i=1,2,3,4,5,6$.
A : even number shows up

$$
A=\{2,4,6\}
$$

$$
|A|=
$$

Uniform Discrete Model - Example

Throwing a fair die is an example of a uniform discrete model. $\Omega=\{1,2,3,4,5,6\}$ Uniform model:

$$
P(\{i\})=\frac{1}{|\Omega|}=\frac{1}{6}
$$

for $i=1,2,3,4,5,6$.
A : even number shows up

$$
\begin{gathered}
A=\{2,4,6\} \\
|A|=3
\end{gathered}
$$

$$
P(A)=
$$

Uniform Discrete Model - Example

Throwing a fair die is an example of a uniform discrete model. $\Omega=\{1,2,3,4,5,6\}$ Uniform model:

$$
P(\{i\})=\frac{1}{|\Omega|}=\frac{1}{6}
$$

for $i=1,2,3,4,5,6$.
A : even number shows up

$$
\begin{gathered}
A=\{2,4,6\} \\
|A|=3 \\
P(A)=\frac{|A|}{|\Omega|}=\frac{3}{6}=\frac{1}{2} .
\end{gathered}
$$

Conditional Probabilities

Conditional probability provides us with a way to reason about the outcome of an experiment based on partial information or observations.

Conditional Probabilities

Conditional probability provides us with a way to reason about the outcome of an experiment based on partial information or observations.

Consider rolling a fair die. What is the probability that the outcome is 6 given that we know that the outcome is an even number.

- Suppose that you rolled a die while blindfolding yourself. Your friend next to you told you that the number is even. Does that change your probability space?

Conditional Probabilities

Conditional probability provides us with a way to reason about the outcome of an experiment based on partial information or observations.

Consider rolling a fair die. What is the probability that the outcome is 6 given that we know that the outcome is an even number.

- Suppose that you rolled a die while blindfolding yourself. Your friend next to you told you that the number is even. Does that change your probability space?
We can express this conditional probability using $P(A \mid B)$: conditional probability of A given B, where $P(B)>0$. In the above example,
- $A=\{$ The outcome is 6$\}$
- $B=\{$ The outcome is an even number $\}$

Conditional Probabilities

- A new probability space to be defined.
- The universe (sample space) has been changed to B
- The probability has now to be normalized by $P(B)$

New probability space $P(\cdot \mid B)$

What is the probability of outcome is 6 , given that the outcome is even?

New probability space $P(\cdot \mid B)$

What is the probability of outcome is 6 , given that the outcome is even?

$$
P(\text { the outcome is } 6 \mid \text { the outcome is even })=\frac{1}{3} .
$$

Why?

New probability space $P(\cdot \mid B)$

Definition of conditional probability,

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =) \frac{|A \cap B|}{|B|} .
\end{aligned}
$$

New probability space $P(\cdot \mid B)$

Definition of conditional probability,

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =) \frac{|A \cap B|}{|B|} .
\end{aligned}
$$

Another example: What is the probability that the outcome is odd, given that the outcome is greater than 1 .

New probability space $P(\cdot \mid B)$

- If A and B are disjoint, i.e., $A \cap B=\emptyset$, then $P(A \mid B)=0$. Why?

New probability space $P(\cdot \mid B)$

- If A and B are disjoint, i.e., $A \cap B=\emptyset$, then $P(A \mid B)=0$. Why?
- In the case of disjoint A and $B, A \cap B=\emptyset$.
- Which means, $P(A \cap B)=0$. So $P(A \mid B)=0$.
- Can you think of two disjoint events in the experiment of two coin tosses?

