COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan
University of Massachusetts at Amherst

Spring 2019

Lecture 19: Weak law of large numbers \& Convergence in probability

Markov and Chebyshev Bounds

- Markov Bound
- Informally: If a nonnegative RV has a small mean, then the probability that this RV takes a large value must also be small.
- Formally: For a non-negative random variable X,

$$
P(X \geq a) \leq \frac{E(X)}{a}
$$

- Chebyshev Bound
- Informally: If a RV has small variance, then the probability that it takes a value far from its mean is also small. Note that the Chebyshev inequality does not require the random variable to be nonnegative.
- Formally: For a random variable X,

$$
P(|X-E(X)| \geq c) \leq \frac{\operatorname{Var}(X)}{c^{2}}
$$

- The mean and the variance of a RV are only a rough summary of its properties, and we cannot expect the bounds to be close approximations of the exact probabilities.

Sample Mean

- Let $X_{1}, X_{2}, \cdots, X_{n}$ be a sequence of i.i.d. (either discrete or continuous) random variables with mean of μ and variance of σ^{2}.
- Its sample (empirical) mean can be computed as

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Note that \bar{X}_{n} is also a random variable.

- We know that the expected value of the sample mean is

$$
\begin{aligned}
E\left[\bar{X}_{n}\right] & =E\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)=\frac{1}{n} n \mu \\
& =\mu
\end{aligned}
$$

- We also know that the variance and standard deviations of the sample mean are

$$
\begin{aligned}
\operatorname{Var}\left(\bar{X}_{n}\right) & =\operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2} \\
& =\frac{\sigma^{2}}{n} \\
\operatorname{Std}\left(\bar{X}_{n}\right) & =\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

The Weak Law of Large Numbers

- Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. (either discrete or continuous) random variables with mean μ and variance σ^{2}. For every $\epsilon>0$, we have

$$
P\left(\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

- The weak law of large numbers states that if n is large, the bulk of the distribution of \bar{X}_{n} will converge to (be concentrated around) μ.
- That is, if we consider a positive length interval $[\mu-\epsilon, \mu+\epsilon]$ around μ, then there is high probability that \bar{X}_{n} will fall in that interval; as $n \rightarrow \infty$, this probability converges to 1 . If ϵ is very small, we may have to wait longer (i.e., need a larger value of n) before this probability converges to 1 .

The Weak Law of Large Numbers

- Let X_{1}, X_{2}, \cdots be a sequence of i.i.d. (either discrete or continuous) random variable with mean μ and variance σ^{2}. For every $\epsilon>0$, we have

$$
P\left(\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

- Proof:
- We know that the Chebyshev bound for a random variable X defines

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

- Using this, we can write the weak law of large numbers as

$$
P\left(\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}
$$

- Thus,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right) & \leq \lim _{n \rightarrow \infty} \frac{\sigma^{2}}{n \epsilon^{2}} \\
& =0
\end{aligned}
$$

Example 1

- Consider an event A with probability $p=P(A)$.
- We repeat the experiment n times.
- Let \bar{X}_{n} be the fraction of time that event A occurs.

This is the empirical frequency of A

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

where $X_{i}=1$ whenever A occurs, and 0 otherwise; thus $E\left[X_{i}\right]=p$.

- The weak law applies and shows that when n is large, the empirical frequency is most likely to be within ϵ of p.
- Loosely speaking, this allows us to conclude that empirical frequencies are faithful estimates of p.
- Alternatively, this is a step towards interpreting the probability p as the frequency of occurrence of A.

Example 2

- Let p be the fraction of voters who support a particular candidate for office.
- We interview n "randomly selected" voters and record \bar{X}_{n}, the fraction of them that support the candidate.
- We view \bar{X}_{n} as our estimate of p and would like to investigate its properties (the true value of p is assumed to be unknown).
- The response of each person interviewed can be viewed as an independent Bernoulli random variable X, with success probability p and variance $\sigma^{2}=p(1-p)$.
- The Chebyshev inequality yields

$$
P\left(\left|\bar{X}_{n}-p\right| \geq \epsilon\right) \leq \frac{p(1-p)}{n \epsilon^{2}}
$$

- Since $p(1-p) \leq 1 / 4$ (Example 5.3 in the textbook), we have

$$
P\left(\left|\bar{X}_{n}-p\right| \geq \epsilon\right) \leq \frac{1}{4 n \epsilon^{2}}
$$

Example 2 (cont.)

$$
P\left(\left|\bar{X}_{n}-p\right| \geq \epsilon\right) \leq \frac{1}{4 n \epsilon^{2}}
$$

- Let $\epsilon=0.1$ and $n=100$:

$$
P\left(\left|\bar{X}_{100}-p\right| \geq 0.1\right) \leq \frac{1}{4 \cdot 100 \cdot(0.1)^{2}}=0.25
$$

That is, with a sample size of $n=100$, the probability that our estimate is incorrect by more than 0.1 is no larger than 0.25 .

- Let's say we'd like to have high confidence (probability at least 95%) that our estimate is within 0.01 of p accurate. How many voters should be sampled?

$$
\begin{gathered}
P\left(\left|\bar{X}_{n}-p\right| \geq 0.1\right) \leq \frac{1}{4 n(0.1)^{2}} \leq 1-0.95 \\
n \geq 50,000
\end{gathered}
$$

Convergence in probability

- Let $Y_{1}, Y 2, \ldots$ be a sequence of random variables (not necessarily independent), and let a be a real number.
- We say that the sequence Y_{n} converges to a in probability, if for every $\epsilon>0$, we have

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-a\right| \geq \epsilon\right)=0
$$

- Given this definition, the weak law of large numbers simply states that the sample mean converges in probability to the true mean μ.

Example

- In order to estimate f, the true fraction of smokers in a large population, Alvin selects n people at random. His estimator \bar{X}_{n} is obtained by dividing X_{n}, the number of smokers in the sample, by n, i.e., $\bar{X}_{n}=X_{n} / n$. Alvin choose the sample size n to be the smallest possible number for which the Chebyshev inequality yields a guarantee that

$$
P\left(\left|\bar{X}_{n}-f\right| \geq \epsilon\right) \leq \delta
$$

where ϵ and δ are some predefined tolerances. Determine how the value of n recommended by the Chebyshev inequality changes in the following cases.
a) The value of ϵ is reduced to half its original value.
b) The probability δ is reduced to half its original value.

Example (solution)

- The best guarantee that can be obtained from the Chebyshev inequality is

$$
P\left(\left|\bar{X}_{n}-f\right| \geq \epsilon\right) \leq \frac{1}{4 n \epsilon^{2}}
$$

a) How should the value of n be updated if ϵ is reduced to half its original value?

$$
\frac{1}{4 n \epsilon^{2}}=\frac{1}{4 n^{\prime} \epsilon^{\prime 2}} \Rightarrow n^{\prime}=\frac{n \epsilon^{2}}{\epsilon^{\prime 2}}=\frac{n \epsilon^{2}}{(\epsilon / 2)^{2}}=4 n
$$

The sample size should be four times larger.
b) How should the value of n be updated if the probability δ is reduced to half its original value?

$$
\frac{1}{4 n \epsilon^{2}}=\frac{2}{4 n^{\prime} \epsilon^{2}} \Rightarrow n^{\prime}=2 n
$$

The sample size should be doubled.

Usefulness of limit theorems

- Conceptually, they provide an interpretation of expectations (as well as probabilities) is terms of a long sequence of identical independent experiments.
- They allow for an approximate analysis of the properties of random variables such as X_{n}. This is to be contrasted with an exact analysis which would require a formula for the PMF or PDF of X_{n}, a complicated and tedious task when n is large.
- They play a major role in inference and statistics, in the presence of large data sets.

