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Lecture 19: Weak law of large numbers &
Convergence in probability



Markov and Chebyshev Bounds

e Markov Bound
» Informally: If a nonnegative RV has a small mean, then the
probability that this RV takes a large value must also be small.
» Formally: For a non-negative random variable X,
E(X)
a

P(X > a) <

e Chebyshev Bound
» Informally: If a RV has small variance, then the probability
that it takes a value far from its mean is also small. Note that
the Chebyshev inequality does not require the random variable
to be nonnegative.
» Formally: For a random variable X,
Var(X)
c2
e The mean and the variance of a RV are only a rough summary
of its properties, and we cannot expect the bounds to be close

approximations of the exact probabilities.

P(IX - E(X)[=¢c) <
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Sample Mean

Let X1, X2, -+, Xn be a sequence of i.i.d. (either discrete or continuous)
random variables with mean of x and variance of o2.
Its sample (empirical) mean can be computed as

n

- 1

X, = ;Zx,-
i=1

Note that X, is also a random variable.
We know that the expected value of the sample mean is

n n
E[X,]=E %Zx,- = %ZE(X,—) = %nu
i=1 i=1

=p

We also know that the variance and standard deviations of the sample mean are

_ T X 1
Var(X,,) — Var <Z,_1 ) — = n.g?
n

n2

Std(Xn) =

SRRt
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The Weak Law of Large Numbers

e Let X1, Xs,... be a sequence of i.i.d. (either discrete or
continuous) random variables with mean y and variance o2.
For every € > 0, we have

P(|7n—u|ze)—>0asn—>oo.

e The weak law of large numbers states that if n is large, the
bulk of the distribution of X, will converge to (be
concentrated around) .

e That is, if we consider a positive length interval [ — €, i + €]
around p, then there is high probability that X, will fall in
that interval; as n — oo, this probability converges to 1. If € is
very small, we may have to wait longer (i.e., need a larger
value of n) before this probability converges to 1.
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The Weak Law of Large Numbers
e Let Xi,Xp,: - be a sequence of i.i.d. (either discrete or continuous) random
variable with mean p and variance o2. For every ¢ > 0, we have
P(|Y,,f,u\26) —0as n— oo.

e Proof:
e We know that the Chebyshev bound for a random variable X defines
Var(X
PUX — il 2 ) < VX

e Using this, we can write the weak law of large numbers as

- Var(X,) o2
P(|X,,—,u|>e)_ 2 3
e Thus,
o2
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Example 1

Consider an event A with probability p = P(A).
We repeat the experiment n times.

Let X, be the fraction of time that event A occurs.
This is the empirical frequency of A

yn: X1+"'+Xn’

n

where X; = 1 whenever A occurs, and 0 otherwise; thus
E[X,] = p.
The weak law applies and shows that when n is large, the
empirical frequency is most likely to be within € of p.
Loosely speaking, this allows us to conclude that empirical
frequencies are faithful estimates of p.

Alternatively, this is a step towards interpreting the probability
p as the frequency of occurrence of A.
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Example 2

Let p be the fraction of voters who support a particular
candidate for office.

We interview n “randomly selected” voters and record X, the
fraction of them that support the candidate.

We view X, as our estimate of p and would like to investigate
its properties (the true value of p is assumed to be unknown).
The response of each person interviewed can be viewed as an
independent Bernoulli random variable X, with success
probability p and variance 02 = p(1 — p).

The Chebyshev inequality yields

p(1—p)

P(|X,—p|>¢€) <
(Kn—pl 2 e) < B

Since p(1 — p) < 1/4 (Example 5.3 in the textbook), we have

P(Xn—pl2 )< 4
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Example 2 (cont.)

- 1
P(|X, —p| >¢) <
(Ko—plze) <o

e Let e =0.1 and n = 100:

P(‘yloo — p’ > 0.].) 0.25

1
= %100 (0.1)2
That is, with a sample size of n = 100, the probability that our
estimate is incorrect by more than 0.1 is no larger than 0.25.
e Let's say we'd like to have high confidence (probability at
least 95%) that our estimate is within 0.01 of p accurate.
How many voters should be sampled?

P(|1X, —p| >0.1) < <1-0.95

_r
4n(0.1)?
n > 50,000
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Convergence in probability

e Let Y1, Y2, ... be a sequence of random variables (not
necessarily independent), and let a be a real number.

e We say that the sequence Y, converges to a in probability,
if for every € > 0, we have

nIi_)rrgOP(|Y,,—a| >e)=0

e Given this definition, the weak law of large numbers simply
states that the sample mean converges in probability to the
true mean pu.
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Example

e In order to estimate f, the true fraction of smokers in a large
population, Alvin selects n people at random. His estimator
X, is obtained by dividing X, the number of smokers in the
sample, by n, i.e., X, = X,/n. Alvin choose the sample size n

to be the smallest possible number for which the Chebyshev

inequality yields a guarantee that
P([Xn—f| >€) <46

where € and J are some predefined tolerances. Determine how
the value of n recommended by the Chebyshev inequality
changes in the following cases.

a) The value of € is reduced to half its original value.

b) The probability ¢ is reduced to half its original value.
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Example (solution)

e The best guarantee that can be obtained from the Chebyshev
inequality is
1

4ne?

P(IXn—fl =€) <

a) How should the value of n be updated if € is reduced to half its
original value?

1 1 oy ne? ne? 4
= — n—— —— = n
4dne?  4n'e? €2 (e/2)?

The sample size should be four times larger.
b) How should the value of n be updated if the probability ¢ is
reduced to half its original value?

1 2

— = =n =2n
4ne2  4n'e?

The sample size should be doubled.
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Usefulness of limit theorems

e Conceptually, they provide an interpretation of expectations
(as well as probabilities) is terms of a long sequence of
identical independent experiments.

e They allow for an approximate analysis of the properties of
random variables such as X,. This is to be contrasted with an
exact analysis which would require a formula for the PMF or
PDF of X,,, a complicated and tedious task when n is large.

e They play a major role in inference and statistics, in the
presence of large data sets.
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