COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon
University of Massachusetts at Amherst

Spring 2019

Lecture 18: Limit Theorems

Overview

- Let $X_{1}, X_{2}, \cdots, X_{n}$ be a sequence of i.i.d. (either discrete or continuous) random variables with mean of μ and variance of σ^{2}.
- Limit theorems are mostly concerned with the sum of these random variables (which forms another random variable):

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}
$$

especially when n is very large.

- Then, the mean and variance of S_{n} can be computed as

$$
\begin{gathered}
E\left[S_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]=n \mu \\
\operatorname{var}\left(S_{n}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+\cdots+\operatorname{var}\left(X_{n}\right)=n \sigma^{2}
\end{gathered}
$$

Overview

- Let us introduce a new RV:

$$
Z_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}
$$

- The mean and variance of Z_{n} is

$$
\begin{gathered}
E\left[Z_{n}\right]=0 \\
\operatorname{var}\left(Z_{n}\right)=1
\end{gathered}
$$

- The central limit theorem states that the distribution of Z_{n} becomes the standard normal variable as n increases.

Markov and Chebyshev Bounds

We will learn these two bounds to prove the Central Limit Theorem. More specifically, Markov Inequality \rightarrow Chebyshev Inequality \rightarrow Central Limit Theorem.

- Markov Bound: For a non-negative random variable X,

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

- Chebyshev Bound: For a random variable X,

$$
P(|X-E[X]| \geq c) \leq \frac{\operatorname{var}(X)}{c^{2}}
$$

The Markov Bound

- Markov Bound: For any non-negative random variable,

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

- Proof: Introduce a new RV Y_{a} where

$$
Y_{a}= \begin{cases}0 & \text { if } X<a \\ a & \text { if } X \geq a\end{cases}
$$

- Then, we know that $Y_{a} \leq X$, which yields

$$
E\left[Y_{a}\right] \leq E[X]
$$

- On the other hand,

$$
E\left[Y_{a}\right]=a \cdot P\left(Y_{a}=a\right)=a \cdot P(X \geq a)
$$

- Thus,

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

The Markov Bound

- Let X be a continuous random variable with uniform density over $[0,4]$.
- Its mean can be computed as

$$
E[X]=\int_{0}^{4} x \frac{1}{4} d x=2
$$

- Then, the Markov inequality asserts that

$$
\begin{aligned}
& P(X \geq 0) \leq 1 \text { whereas } P(X \geq 0)=1 \\
& P(X \geq 1) \leq 1 \text { whereas } P(X \geq 1)=\frac{3}{4} \\
& P(X \geq 2) \leq 1 \text { whereas } P(X \geq 2)=0.5
\end{aligned}
$$

These are uninformative...

$$
\begin{aligned}
& P(X \geq 3) \leq \frac{2}{3} \text { whereas } P(X \geq 3)=\frac{1}{4} \\
& P(X \geq 4) \leq \frac{2}{4} \text { whereas } P(X \geq 4)=0
\end{aligned}
$$

- The Markov inequality can be quite loose.

The Chebyshev Bound

- Chebyshev Bound:

$$
P(|X-E[X]| \geq c) \leq \frac{\sigma^{2}}{c^{2}}, \text { for all } c>0
$$

- Proof: Let us introduce a non-negative RV $(X-\mu)^{2}$.
- We can apply the Markov bound on this RV:

$$
P\left((X-\mu)^{2} \geq a\right) \leq \frac{E\left[(X-\mu)^{2}\right]}{a}=\frac{\sigma^{2}}{a}
$$

- We will only consider $a>0$ where a can be defined as $a=c^{2}$. Then, we have

$$
P\left((X-\mu)^{2} \geq c^{2}\right) \leq \frac{\sigma^{2}}{c^{2}}
$$

- Since the event $(X-\mu)^{2} \geq c^{2}$ is identical to the event $|X-\mu| \geq c$,

$$
P\left((X-\mu)^{2} \geq c^{2}\right)=P(|X-\mu| \geq c) \leq \frac{\sigma^{2}}{c^{2}}
$$

- The Chebyshev bound is often more powerful than the Markov bound because it also uses information on the variance of X.

An Alternate Form of The Chebyshev Bound

- Let $c=k \sigma$, then

$$
P(|X-\mu| \geq k \sigma)=P\left(\left|\frac{X-\mu}{\sigma}\right| \geq k\right)=\frac{1}{k^{2}}
$$

- The probability that a RV takes a value more than k standard deviations from its mean is at most $1 / k^{2}$.

The Chebyshev Bound

- Let X be a continuous random variable with uniform density over [0,4].
- Its mean is

$$
E[X]=\int_{0}^{4} x \frac{1}{4} d x=2
$$

- Its variance is

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=\frac{4}{3}
$$

- Then, the Chebyshev inequality asserts that

$$
\begin{gathered}
P(|X-2| \geq 0) \leq 1 \text { so is not informative } \\
P(|X-2| \geq 1) \leq 1 \text { so is not informative } \\
P(|X-2| \geq 2) \leq \frac{1}{3} \text { or equivalently } P(X \geq 4 \cup X \leq 0) \leq \frac{1}{3}
\end{gathered}
$$

- We can also derive that

$$
P(0<X<4) \geq \frac{2}{3}
$$

Example

Suppose we know that the number of items produced in a factory during a week is a random variable with mean of 50 and variance of 25 .

- What can be said about the probability that this week's production will exceed 75 ? By Markov's inequaity

$$
P(X \geq 75) \leq \frac{50}{75}=\frac{2}{3}
$$

Example

Suppose we know that the number of items produced in a factory during a week is a random variable with mean of 50 and variance of 25 .

- What can be said about the probability that this week's production will be between 40 and 60 ?
By Chebyshev's inequality

$$
P(|X-50| \geq 10) \leq \frac{25}{100}=\frac{1}{4}
$$

Thus,

$$
P(40 \leq X \leq 60)=1-P(|X-50| \geq 10) \geq \frac{3}{4}
$$

