COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon
University of Massachusetts at Amherst

Spring 2019

Lecture 16: Joint PDFs

A Joint PDF of Multiple RVs

- We now consider a joint PDF of multiple random variables.
- We say that two continuous random variables associated with the same experiment are jointly continuous and have a joint PDF $f_{X, Y}$.

$$
P((X, Y) \in B)=\iint_{(x, y) \in B} f_{X, Y}(x, y) d x d y
$$

- If B is defined such that $B=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$, then

$$
\begin{aligned}
P(a \leq x \leq b, c \leq y \leq d) & =\int_{c}^{d} \int_{a}^{b} f_{X, Y}(x, y) d x d y \\
& =\int_{a}^{b} \int_{c}^{d} f_{X, Y}(x, y) d y d x
\end{aligned}
$$

Joint Normal Random Variables

A Joint PDF of Multiple RVs

- A joint PDF should satisfy:
- Non-negative: $f_{X, Y}(x, y) \geq 0$ for all $(X, Y) \subseteq \mathcal{X}^{2}$
- Normalization: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$.
- We can compute marginal PDFs f_{X} and f_{Y} as

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y
$$

and

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

Example

- Let $f_{X, Y}(x, y)$ be a two-dimensional uniform PDF within $-1 \leq x \leq 1$ and $2 \leq y \leq 6$.

$$
f_{X, Y}(x, y)= \begin{cases}c, & \text { if }-1 \leq x \leq 1 \text { and } 2 \leq y \leq 6 \\ 0, & \text { otherwise }\end{cases}
$$

Then, what is $P(0 \leq x \leq 1,2 \leq y \leq 3)$?

- Solution: We know that

$$
\int_{2}^{6} \int_{-1}^{1} c d x d y=1
$$

- Then, we know that $c=\frac{1}{8}$
- Then,

$$
\begin{aligned}
P(0 \leq 1 \leq b, 2 \leq y \leq 3) & =\int_{2}^{3} \int_{0}^{1} \frac{1}{8} d x d y \\
& =\frac{1}{8}
\end{aligned}
$$

Joint CDF

- We define a joint CDF of two RVs X and Y as

$$
\begin{aligned}
F_{X, Y}(x, y) & =P(X \leq x, Y \leq y) \\
& =\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(s, t) d t d s
\end{aligned}
$$

- Conversely, the joint PDF can be derived from the joint CDF as

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}
$$

Expectation

- If X and Y are random variables, then $Z=g(X, Y)$ is also a random variable.
- The expected value of Z can be computed as

$$
E(Z)=E(g(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(X, Y) f_{X, Y}(x, y) d x d y
$$

- Note that when $Z=X$, then we can compute the expected value of X.
- If $g(X, Y)$ is a linear function of X and Y, e.g., $g(X, Y)=a X+b Y+c$, we have

$$
E[a X+b Y+c]=a E[X]+b E[Y]+c
$$

- Proof:

Example

Let X and Y are jointly continuous with

$$
f(x, y)= \begin{cases}c x^{2}+\frac{x y}{3} & \text { if } 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $P(X+Y \geq 1)$.

Example

Let X and Y are jointly continuous with

$$
f(x, y)= \begin{cases}c x^{2}+\frac{x y}{3} & \text { if } 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $P(X+Y \geq 1)$.

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{2}\left(c x^{2}+\frac{x y}{3}\right) d y d x=1 \Rightarrow c=1 \\
P(X+Y \geq 1)=\int_{0}^{1} \int_{1-x}^{2}\left(x^{2}+\frac{x y}{3}\right) d y d x=\frac{65}{72}
\end{gathered}
$$

(b) Find marginal PDF's of X and Y.

Example

Let X and Y are jointly continuous with

$$
f(x, y)= \begin{cases}c x^{2}+\frac{x y}{3} & \text { if } 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $P(X+Y \geq 1)$.

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{2}\left(c x^{2}+\frac{x y}{3}\right) d y d x=1 \Rightarrow c=1 \\
P(X+Y \geq 1)=\int_{0}^{1} \int_{1-x}^{2}\left(x^{2}+\frac{x y}{3}\right) d y d x=\frac{65}{72}
\end{gathered}
$$

(b) Find marginal PDF's of X and Y.

$$
\begin{gathered}
f_{X}(x)=2 x^{2}+\frac{2 x}{3} \text { if } 0 \leq x \leq 1 . \\
f_{Y}(y)=\frac{1}{3}+\frac{y}{6} \text { if } 0 \leq y \leq 2
\end{gathered}
$$

(c) Are X and Y independent?

Example

Let X and Y are jointly continuous with

$$
f(x, y)= \begin{cases}c x^{2}+\frac{x y}{3} & \text { if } 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $P(X+Y \geq 1)$.

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{2}\left(c x^{2}+\frac{x y}{3}\right) d y d x=1 \Rightarrow c=1 \\
P(X+Y \geq 1)=\int_{0}^{1} \int_{1-x}^{2}\left(x^{2}+\frac{x y}{3}\right) d y d x=\frac{65}{72}
\end{gathered}
$$

(b) Find marginal PDF's of X and Y.

$$
\begin{gathered}
f_{X}(x)=2 x^{2}+\frac{2 x}{3} \text { if } 0 \leq x \leq 1 . \\
f_{Y}(y)=\frac{1}{3}+\frac{y}{6} \text { if } 0 \leq y \leq 2
\end{gathered}
$$

(c) Are X and Y independent? No.

Motivation Example - Covariance and Correlation

- Hypothetically assume that there exists a mysterious wireless signal transmitter that 1) produces a uniform continuous random variable Z from $[0,5]$ and 2) wirelessly transmits the signal.
- Assume that you are a manufacturer of a new receiver that can estimate the transmitted value of Z with some uncertainty (i.e., noise). Let's say that the noise can be modeled as a normally distributed random variable with mean 0 and standard deviation 0.5 . This estimated value X is:

$$
X=Z+N(0,0.5)
$$

- Further assume that there exists a competitor in the market that can very accurately estimate the transmitted value of Z. This estimated value Y is:

$$
Y=Z+N(0,0.1)
$$

Motivation Example - Covariance and Correlation

- Assume that you, as a new manufacturer, do not know the exact values of these mean and standard deviation, but want to see if your receiver's estimated values agree with the competitor's.
- You collected 1000 values of X and Y through an experiment and compared the values:

Motivation Example - Covariance and Correlation

- Assume that you, as a new manufacturer, do not know the exact values of these mean and standard deviation, but want to see if your receiver's estimated values agree with the competitor's.
- You collected 1000 values of X and Y through an experiment and compared the values:

Quantifying Dependence: Covariance

- The covariance between any two RVs (either discrete or continuous) X and Y is one measure of dependence that quantifies the degree to which there is a linear relationship between X and Y.

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

- If X and Y are independent then $\operatorname{cov}(X, Y)=0$.
- However, $\operatorname{cov}(X, Y)=0$ does not necessarily imply that X and Y are independent (see Example 4.13 of the text).
- Note that $\operatorname{cov}(X, X)=\operatorname{var}(X)$.
- For a constant $a, \operatorname{cov}(X, a Y+b)=a \cdot \operatorname{cov}(X, Y)$. Prove it.
- Note that $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y)$. Prove it.

Quantifying Dependence: Covariance

- Prove that $\operatorname{cov}(X, Y+Z)=\operatorname{cov}(X, Y)+\operatorname{cov}(X, Z)$.
- More generalized equation

$$
\operatorname{cov}\left(X, \sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{cov}\left(X, Y_{i}\right)
$$

Example

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$		
$\mathrm{X} \backslash \mathrm{Y}$	$Y=0$	$Y=1$
$X=0$	0.4	0.1
$X=1$	0.2	0.3

- $P(X=0)=0.5, P(X=1)=0.5$ and so $E[X]=0.5$
- $P(Y=0)=0.6, P(Y=1)=0.4$ and so $E[Y]=0.4$
- $E[X Y]$ can be computed as follows

$$
\begin{aligned}
E[X Y]= & 0 \times 0 \times P(X=0, Y=0)+0 \times 1 \times P(X=0, Y=1) \\
& +1 \times 0 \times P(X=1, Y=0)+1 \times 1 \times P(X=1, Y=1) \\
& =0.3
\end{aligned}
$$

- $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=0.3-0.5 \times 0.4=0.1$
- How well X and Y are correlated given that $\operatorname{cov}(X, Y)=0.1$?

Quantifying Dependence: Covariance

- Similarly, the computed (empirical) covariance of the previous example was $\operatorname{cov}(X, Y)=2.14$.
- What does this mean?

