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Lecture 16: Joint PDFs



A Joint PDF of Multiple RVs

• We now consider a joint PDF of multiple random variables.

• We say that two continuous random variables associated with
the same experiment are jointly continuous and have a joint
PDF fX ,Y .

P((X ,Y ) ∈ B) =

∫∫
(x ,y)∈B

fX ,Y (x , y)dxdy .

• If B is defined such that B = {(x , y)|a ≤ x ≤ b, c ≤ y ≤ d},
then

P(a ≤ x ≤ b, c ≤ y ≤ d) =

∫ d

c

∫ b

a
fX ,Y (x , y)dxdy

=

∫ b

a

∫ d

c
fX ,Y (x , y)dydx .
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A Joint PDF of Multiple RVs

• A joint PDF should satisfy:
I Non-negative: fX ,Y (x , y) ≥ 0 for all (X ,Y ) ⊆ X 2

I Normalization:
∫∞
−∞

∫∞
−∞ fX ,Y (x , y)dxdy = 1.

• We can compute marginal PDFs fX and fY as

fX (x) =

∫ ∞
−∞

fX ,Y (x , y)dy

and

fY (y) =

∫ ∞
−∞

fX ,Y (x , y)dx
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Example

• Let fX ,Y (x , y) be a two-dimensional uniform PDF within
−1 ≤ x ≤ 1 and 2 ≤ y ≤ 6.

fX ,Y (x , y) =

{
c , if − 1 ≤ x ≤ 1 and 2 ≤ y ≤ 6
0, otherwise,

Then, what is P(0 ≤ x ≤ 1, 2 ≤ y ≤ 3)?

• Solution: We know that∫ 6

2

∫ 1

−1
cdxdy = 1.

• Then, we know that c = 1
8

• Then,

P(0 ≤ 1 ≤ b, 2 ≤ y ≤ 3) =

∫ 3

2

∫ 1

0

1

8
dxdy

=
1

8
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Joint CDF

• We define a joint CDF of two RVs X and Y as

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)

=

∫ x

−∞

∫ y

−∞
fX ,Y (s, t)dtds

• Conversely, the joint PDF can be derived from the joint CDF
as

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x∂y
.
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Expectation

• If X and Y are random variables, then Z = g(X ,Y ) is also a
random variable.

• The expected value of Z can be computed as

E (Z ) = E (g(X ,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(X ,Y )fX ,Y (x , y)dxdy

• Note that when Z = X , then we can compute the expected
value of X .

• If g(X ,Y ) is a linear function of X and Y , e.g.,
g(X ,Y ) = aX + bY + c , we have

E [aX + bY + c] = aE [X ] + bE [Y ] + c

• Proof:

8 / 15



Example

Let X and Y are jointly continuous with

f (x , y) =

{
cx2 + xy

3
if 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

0 otherwise.

(a) Find P(X + Y ≥ 1).

∫ 1

0

∫ 2

0

(
cx2 +

xy

3

)
dydx = 1⇒ c = 1

P(X + Y ≥ 1) =

∫ 1

0

∫ 2

1−x

(
x2 +

xy

3

)
dydx =

65

72

(b) Find marginal PDF’s of X and Y .

fX (x) = 2x2 +
2x

3
if 0 ≤ x ≤ 1.

fY (y) =
1

3
+

y

6
if 0 ≤ y ≤ 2.

(c) Are X and Y independent? No.
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Motivation Example - Covariance and Correlation

• Hypothetically assume that there exists a mysterious wireless signal transmitter
that 1) produces a uniform continuous random variable Z from [0, 5] and 2)
wirelessly transmits the signal.

• Assume that you are a manufacturer of a new receiver that can estimate the
transmitted value of Z with some uncertainty (i.e., noise). Let’s say that the
noise can be modeled as a normally distributed random variable with mean 0
and standard deviation 0.5. This estimated value X is:

X = Z + N(0, 0.5)

• Further assume that there exists a competitor in the market that can very
accurately estimate the transmitted value of Z . This estimated value Y is:

Y = Z + N(0, 0.1)

Transmi�er
Z

Air Channel

Your
Receiver

Compe�tor’s
Receiver

X = Z + N(0, 0.5)

Y = Z + N(0, 0.1)
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Motivation Example - Covariance and Correlation

• Assume that you, as a new manufacturer, do not know the exact
values of these mean and standard deviation, but want to see if your
receiver’s estimated values agree with the competitor’s.

• You collected 1000 values of X and Y through an experiment and
compared the values:
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Quantifying Dependence: Covariance

• The covariance between any two RVs (either discrete or
continuous) X and Y is one measure of dependence that
quantifies the degree to which there is a linear relationship
between X and Y .

cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

• If X and Y are independent then cov(X ,Y ) = 0.

• However, cov(X ,Y ) = 0 does not necessarily imply that X
and Y are independent (see Example 4.13 of the text).

• Note that cov(X ,X ) = var(X ).

• For a constant a, cov(X , aY + b) = a · cov(X ,Y ). Prove it.

• Note that var(X + Y ) = var(X ) + var(Y ) + 2cov(X ,Y ).
Prove it.
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Quantifying Dependence: Covariance

• Prove that cov(X ,Y + Z ) = cov(X ,Y ) + cov(X ,Z ).

• More generalized equation

cov

(
X ,

n∑
i=1

Yi

)
=

n∑
i=1

cov(X ,Yi )
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Example

P(X,Y)

X\Y Y = 0 Y = 1

X = 0 0.4 0.1

X = 1 0.2 0.3

• P(X = 0) = 0.5,P(X = 1) = 0.5 and so E [X ] = 0.5

• P(Y = 0) = 0.6,P(Y = 1) = 0.4 and so E [Y ] = 0.4

• E [XY ] can be computed as follows

E [XY ] = 0× 0× P(X = 0,Y = 0) + 0× 1× P(X = 0,Y = 1)

+ 1× 0× P(X = 1,Y = 0) + 1× 1× P(X = 1,Y = 1)

= 0.3

• cov(X ,Y ) = E [XY ]− E [X ]E [Y ] = 0.3− 0.5× 0.4 = 0.1

• How well X and Y are correlated given that cov(X ,Y ) = 0.1?
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Quantifying Dependence: Covariance

• Similarly, the computed (empirical) covariance of the previous
example was cov(X ,Y ) = 2.14.

• What does this mean?
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