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Lecture 14: Common Continuous Random Variables



Recap: Probability Density of Continuous RVs

• In the simplest case A = [a, b] is a single interval and this
definition reduces to a definite integral:

P(a < X < b) =

∫ b

a
fX (x)dx

• Intuitively, the probability mass of an interval [a, b] is
P(a < X < b).
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Cumulative Distribution Functions

• The cumulative distribution function (CDF) for a continuous random variable X
is defined as

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t)dt.

• Intuitively, the CDF accumulates probability upto the value of x .
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CDF - Example

• The PDF of the above graph can be defined as

fX (x) =

{ 1

b − a
, if a ≤ x ≤ b

0, otherwise,

• Question: What is its CDF?

• Answer:

FX (x) =


0, x < a
x − a

b − a
, if a ≤ x ≤ b

1, x > b
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Cumulative Distribution Functions

• CDF
I is a continuous function of x , if X is a continuous RV.
I is monotonically non-decreasing:

if x ≤ y , then FX (x) ≤ FX (y).

I approaches 0 as x → −∞, and 1 as x →∞.

• If CDF is known, its PDF can be similarly derived as

fX (x) =
dFX
dx

(x).
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Cumulative Distribution Functions

• Question: Well, if we have PDF, why do we need CDF?

• Answer: If we have CDF, we do not need to integrate every
time when we compute P(a ≤ X ≤ b).

P(a < X < b) =

∫ b

a
fX (x)dx

=

∫ b

−∞
fX (x)dx −

∫ a

−∞
fX (x)dx

= FX (b)− FX (a)

7 / 1



Common Continuous Random Variables

• There are some commonly used continuous RVs (PDFs)
I The Uniform Random Variables
I The Exponential Random Variables
I The Normal (Gaussian) Random Variables
I and many more...

• Let us explore some of these RVs
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Uniform Continuous Random Variables

• Consider a RV that takes continuous values in an interval [a, b].

• Uniform continuous RV has a uniform probability density in [a, b].

• In other words, it has the same probability for two sub-intervals of
the same length.

• Do not confuse with the discrete random variable!

• Its PDF can be defined as

fX (x) =

{ 1

b − a
, if a ≤ x ≤ b

0, otherwise,

• We have looked at this distribution already.
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Uniform Random Variables

• Its CDF can be defined as

FX (x) =


0, x <a
x − a

b − a
, if a ≤ x ≤ b

1, x >b

• When b = 2 and a = 0, what is P(0.5 < X < 1.5)?

• Answer: FX (1.5)− FX (0.5) =
1.5

2
− 0.5

2
=

1

2
.
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Exponential Random Variables

• An exponential random variable X is a continuous random
variable with PDF:

fX (x) =

{
λe−λx , if x ≥ 0
0, otherwise

,

where λ must be strictly greater than 0.

• Exponential random variables are often used to model waiting
times (eg: the length of time between calls at a call center,
the length of time between people entering a store, the length
of time between hits on a website, etc...).

• Closely connected to the geometric (discrete) random
variable, which also relates to the discrete time that will
elapse until an incident of interest occurs.
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Exponential Random Variables: λ = 5

• The probability density can be greater than 1 at some points.

fX (x) =

{
λe−λx , if x ≥ 0
0, otherwise

,
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Exponential Random Variables: λ = 0.5

fX (x) =

{
λe−λx , if x ≥ 0
0, otherwise

,
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CDF of Exponential RV

• Its PDF is:

fX (x) =

{
λe−λx , if x ≥ 0
0, otherwise

.

• We know that ∫ ∞
−∞

eax =
1

a
eax .

or
d

dx
eax = aeax .

• By definition of CDF,

FX (x) =

∫ x

−∞
fX (t)dt =

∫ x

0
λe−λtdt

= −e−λx
∣∣∣x
0

= 1− e−λx , if x ≥ 0

• Thus,

FX (x) =

{
1− e−λx , if x ≥ 0
0, otherwise

.
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Probability Mass

• Using these substitutions we can find the value of the probability mass for an
interval [a, b] as follows:

P(a < X < b) =

∫ b

a
λe−λxdx

= λ

∫ b

a
e−λxdx

= −e−λx
∣∣∣b
a

= −(e−λb)− (−e−λa)

= e−λa − e−λb.

• Or Similarly

P(a < X < b) = FX (b)− FX (a)

=
(

1− e−λb
)
−
(

1− e−λa
)

= e−λa − e−λb.
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Normalization

• Normalization says that P(0 < X <∞) should be equal to 1.
We can use the last result to verify normalization:

P(0 < X <∞) = lim
b→∞

FX (b)− lim
a→0

FX (a)

= lim
b→∞

(
1− e−λb

)
− lim

a→0

(
1− e−λa

)
= (1)− (0)

= 1
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Mean and Variance of Exponential RV

• The mean and the variance can be calculated as

E (X ) =
1

λ
and

var(X ) =
1

λ2

• Show this by using the following:

I Integration by parts:

∫
udv = uv −

∫
vdu

I
∫ ∞
−∞

eaxdx =
1

a
eax and/or

d

dx
eax = aeax .
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Example

• Question: Let the number of miles traveled by a car before
its engine fails to function be governed by the exponential
distribution with a mean of 100, 000 miles. What is the
probability that a car’s engine will fail during its first 50, 000
miles of operation?

• Solution: Since E (X ) =
1

λ
for an exponential random

variable X . Thus λ = 1/100000. Then,

P(X < 50, 000) = FX (50, 000) = 1− e−λ50,000

= 1− e−
50,000

100,000

= 1− e−
1
2

= 0.3934
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