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Lecture 14: Common Continuous Random Variables



Recap: Probability Density of Continuous RVs

e In the simplest case A = [a, b] is a single interval and this
definition reduces to a definite integral:

P(a< X < b) = /b fe(x)dx

e Intuitively, the probability mass of an interval [a, b] is
P(a < X < b).
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Cumulative Distribution Functions

e The cumulative distribution function (CDF) for a continuous random variable X
is defined as "

&M=PM§A=/ Fe(t)dt
—oo
e Intuitively, the CDF accumulates probability upto the value of x.
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CDF - Example

£x(x) Fx(x)
1
ba | ], frresnmoey
0 a b =

1 .
fX(x):{ P fa<x<b

0, otherwise,
e Question: What is its CDF?
e Answer:
0, x<a
Fx(x) = ’;:z ifa<x<b
1, x>b
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Cumulative Distribution Functions

e CDF

P is a continuous function of x, if X is a continuous RV.
» is monotonically non-decreasing:

if x <y, then Fx(x) < Fx(y).

» approaches 0 as x — —o0, and 1 as x — 0.

e If CDF is known, its PDF can be similarly derived as

dF.
fx(x) = ().
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Cumulative Distribution Functions

e Question: Well, if we have PDF, why do we need CDF?

e Answer: If we have CDF, we do not need to integrate every
time when we compute P(a < X < b).

Pl(a< X <b)= /b fx (x)dx

:/b fx(x)dx—/a e (x)dx

—00 —00

= Fx(b) — Fx(a)
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Common Continuous Random Variables

e There are some commonly used continuous RVs (PDFs)

» The Uniform Random Variables

» The Exponential Random Variables

» The Normal (Gaussian) Random Variables
» and many more...

e Let us explore some of these RVs
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Uniform Continuous Random Variables

Consider a RV that takes continuous values in an interval [a, b].
Uniform continuous RV has a uniform probability density in [a, b].

In other words, it has the same probability for two sub-intervals of
the same length.

Do not confuse with the discrete random variablel!
Its PDF can be defined as

1 .
fe(x) = P ifa<x<b
0, otherwise,

We have looked at this distribution already.

fx(x) Fx(x)
1
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Uniform Random Variables

e Its CDF can be defined as

0, x <a
Fx(x) = z:z, ifa<x<b

1, X >b

e When b=2 and a=0, what is P(0.5 < X < 1.5)?
1. 05 1
e Answer: Fx(1.5) — Fx(0.5) = >

2 2 2
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Exponential Random Variables

e An exponential random variable X is a continuous random
variable with PDF:

— X . >
fx(x):{)\e , ifx>0

0, otherwise

where A\ must be strictly greater than 0.

e Exponential random variables are often used to model waiting
times (eg: the length of time between calls at a call center,
the length of time between people entering a store, the length
of time between hits on a website, etc...).

e Closely connected to the geometric (discrete) random
variable, which also relates to the discrete time that will
elapse until an incident of interest occurs.
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Exponential Random Variables: A =5

Exponential
A=5

Probability density function Cumulative distribution function
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e The probability density can be greater than 1 at some points.

—Ax . >
fx(x):{Ae , ifx>0

0, otherwise
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P(X=x)

Exponential Random Variables: A = 0.5

Probability density function

10 1
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CDF of Exponential RV

Its PDF is:
[ xe™™, ifx>0
fx(x) = { 0, otherwise
We know that
/Oo ax 1 ax
e = —e

oo a
or

ieax — e

dx

By definition of CDF,

Fx(x) / fx(t)dt:/o,\e*”dt
—o00

x
_ef>\x

0
=1—e ™ ifx>0

Thus,
1—e ™, ifx>0
Fx(x) = { 0, otherwise
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Probability Mass

e Using these substitutions we can find the value of the probability mass for an
interval [a, b] as follows:

b
Pa< X < b) = / Ae™Mdx

b
= )\/ e~ Mdx
a

b
_ef>\x

(&) = (—e™)

— oA _ oAb

e Or Similarly

P(a < X < b) = Fx(b) — Fx(a)

=)o)

— oA _ oAb
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Normalization

e Normalization says that P(0 < X < c0) should be equal to 1.
We can use the last result to verify normalization:

P(0 < X <o0) = lim Fx(b)— lim Fx(a)

b—o0 a—0

= lim (1 — e_)‘b> — lim (1 — e_Aa>
b—o0 a—0

= (1) —(0)

=1
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Mean and Variance of Exponential RV

e The mean and the variance can be calculated as

1
E(X) = X and
1
var(X) = 2

e Show this by using the following:
> Integration by parts: /udv = uv—/vdu

> ax 1 ax d ax ax
> e™dx = —e® and/or —e™ = ae?.
a dx

— 00
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Example

e Question: Let the number of miles traveled by a car before
its engine fails to function be governed by the exponential
distribution with a mean of 100,000 miles. What is the
probability that a car’s engine will fail during its first 50, 000
miles of operation?

1
e Solution: Since E(X) = 3 for an exponential random
variable X. Thus A = 1/100000. Then,

P(X < 50,000) = Fx(50,000) = 1 — e~ *50:000

50,000
— 1 — e 100,000

1
= ]_ — e_E
= 0.3934
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