COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon
University of Massachusetts at Amherst

Spring 2019

Lecture 14: Common Continuous Random Variables

Recap: Probability Density of Continuous RVs

- In the simplest case $A=[a, b]$ is a single interval and this definition reduces to a definite integral:

$$
P(a<X<b)=\int_{a}^{b} f_{X}(x) d x
$$

- Intuitively, the probability mass of an interval $[a, b]$ is $P(a<X<b)$.

Cumulative Distribution Functions

- The cumulative distribution function (CDF) for a continuous random variable X is defined as

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

- Intuitively, the CDF accumulates probability upto the value of x.

CDF - Example

- The PDF of the above graph can be defined as

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}
$$

- Question: What is its CDF?
- Answer:

$$
F_{X}(x)= \begin{cases}0, & x<a \\ x-a & \text { if } a \leq x \leq b \\ \frac{b-a}{}, & x>b \\ 1, & x>b\end{cases}
$$

Cumulative Distribution Functions

- CDF
- is a continuous function of x, if X is a continuous RV.
- is monotonically non-decreasing:

$$
\text { if } x \leq y \text {, then } F_{X}(x) \leq F_{X}(y)
$$

- approaches 0 as $x \rightarrow-\infty$, and 1 as $x \rightarrow \infty$.
- If CDF is known, its PDF can be similarly derived as

$$
f_{X}(x)=\frac{d F_{X}}{d x}(x)
$$

Cumulative Distribution Functions

- Question: Well, if we have PDF, why do we need CDF?
- Answer: If we have CDF, we do not need to integrate every time when we compute $P(a \leq X \leq b)$.

$$
\begin{aligned}
P(a<X<b) & =\int_{a}^{b} f_{X}(x) d x \\
& =\int_{-\infty}^{b} f_{X}(x) d x-\int_{-\infty}^{a} f_{X}(x) d x \\
& =F_{X}(b)-F_{X}(a)
\end{aligned}
$$

Common Continuous Random Variables

- There are some commonly used continuous RVs (PDFs)
- The Uniform Random Variables
- The Exponential Random Variables
- The Normal (Gaussian) Random Variables
- and many more...
- Let us explore some of these RVs

Uniform Continuous Random Variables

- Consider a RV that takes continuous values in an interval $[a, b]$.
- Uniform continuous RV has a uniform probability density in $[a, b]$.
- In other words, it has the same probability for two sub-intervals of the same length.
- Do not confuse with the discrete random variable!
- Its PDF can be defined as

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}
$$

- We have looked at this distribution already.

Uniform Random Variables

- Its CDF can be defined as

$$
F_{X}(x)= \begin{cases}0, & x<\mathrm{a} \\ \frac{x-a}{b-a}, & \text { if } a \leq x \leq b \\ 1, & x>b\end{cases}
$$

- When $b=2$ and $a=0$, what is $P(0.5<X<1.5)$?
- Answer: $F_{X}(1.5)-F_{X}(0.5)=\frac{1.5}{2}-\frac{0.5}{2}=\frac{1}{2}$.

Exponential Random Variables

- An exponential random variable X is a continuous random variable with PDF:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

where λ must be strictly greater than 0 .

- Exponential random variables are often used to model waiting times (eg: the length of time between calls at a call center, the length of time between people entering a store, the length of time between hits on a website, etc...).
- Closely connected to the geometric (discrete) random variable, which also relates to the discrete time that will elapse until an incident of interest occurs.

Exponential Random Variables: $\lambda=5$

Exponential
$\lambda=5$

Probability density function

Cumulative distribution function

- The probability density can be greater than 1 at some points.

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Exponential Random Variables: $\lambda=0.5$

Exponential

$\lambda=0.5$

CDF of Exponential RV

- Its PDF is:

$$
f_{X}(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\
0, & \text { otherwise }
\end{array} .\right.
$$

- We know that

$$
\int_{-\infty}^{\infty} e^{a x}=\frac{1}{a} e^{a x}
$$

or

$$
\frac{d}{d x} e^{a x}=a e^{a x}
$$

- By definition of CDF,

$$
\begin{aligned}
F_{X}(x) & =\int_{-\infty}^{x} f_{X}(t) d t=\int_{0}^{x} \lambda e^{-\lambda t} d t \\
& =-\left.e^{-\lambda x}\right|_{0} ^{x} \\
& =1-e^{-\lambda x}, \text { if } x \geq 0
\end{aligned}
$$

- Thus,

$$
F_{X}(x)= \begin{cases}1-e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Probability Mass

- Using these substitutions we can find the value of the probability mass for an interval $[a, b]$ as follows:

$$
\begin{aligned}
P(a<X<b) & =\int_{a}^{b} \lambda e^{-\lambda x} d x \\
& =\lambda \int_{a}^{b} e^{-\lambda x} d x \\
& =-\left.e^{-\lambda x}\right|_{a} ^{b} \\
& =-\left(e^{-\lambda b}\right)-\left(-e^{-\lambda a}\right) \\
& =e^{-\lambda a}-e^{-\lambda b}
\end{aligned}
$$

- Or Similarly

$$
\begin{aligned}
P(a<X<b) & =F_{X}(b)-F_{X}(a) \\
& =\left(1-e^{-\lambda b}\right)-\left(1-e^{-\lambda a}\right) \\
& =e^{-\lambda a}-e^{-\lambda b} .
\end{aligned}
$$

Normalization

- Normalization says that $P(0<X<\infty)$ should be equal to 1 . We can use the last result to verify normalization:

$$
\begin{aligned}
P(0<X<\infty) & =\lim _{b \rightarrow \infty} F_{X}(b)-\lim _{a \rightarrow 0} F_{X}(a) \\
& =\lim _{b \rightarrow \infty}\left(1-e^{-\lambda b}\right)-\lim _{a \rightarrow 0}\left(1-e^{-\lambda a}\right) \\
& =(1)-(0) \\
& =1
\end{aligned}
$$

Mean and Variance of Exponential RV

- The mean and the variance can be calculated as

$$
\begin{gathered}
E(X)=\frac{1}{\lambda} \text { and } \\
\operatorname{var}(X)=\frac{1}{\lambda^{2}}
\end{gathered}
$$

- Show this by using the following:
- Integration by parts: $\int u d v=u v-\int v d u$
$-\int_{-\infty}^{\infty} e^{a x} d x=\frac{1}{a} e^{a x}$ and/or $\frac{d}{d x} e^{a x}=a e^{a x}$.

Example

- Question: Let the number of miles traveled by a car before its engine fails to function be governed by the exponential distribution with a mean of 100,000 miles. What is the probability that a car's engine will fail during its first 50, 000 miles of operation?
- Solution: Since $E(X)=\frac{1}{\lambda}$ for an exponential random variable X. Thus $\lambda=1 / 100000$. Then,

$$
\begin{aligned}
P(X<50,000) & =F_{X}(50,000)=1-e^{-\lambda 50,000} \\
& =1-e^{-\frac{50,000}{100,000}} \\
& =1-e^{-\frac{1}{2}} \\
& =0.3934
\end{aligned}
$$

