COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon
University of Massachusetts at Amherst

Spring 2019

Lecture 12: Multiple Random Variables

Recall: Random Variable

- A random variable is a function that maps from the sample space to the real numbers,

$$
X: \Omega \rightarrow \mathbb{R}
$$

Multiple Random Variables

- Consider two random variables, X and Y associated with the same experiment.
- For $x, y \in \mathbb{R}$, we can define events of the form

$$
\{X=x, Y=y\}=\{X=x\} \cap\{Y=y\}
$$

- The probabilities of these events give the joint PMF of X and Y :

$$
p_{X, Y}(x, y)=P(X=x, Y=y)=P(X=x \text { and } Y=y)=P(\{X=x\} \cap\{Y=y\})
$$

- Useful for describing multiple properties over the outcome space of a single experiment, e.g., pick a random student and let X be their height and Y be their weight.

Tabular Representation of Joint PMFs

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	$Y=1$	$Y=2$	$Y=3$	$Y=4$
$X=1$	0.1	0.1	0	0.2
$X=2$	0.05	0.05	0.1	0
$X=3$	0	0.1	0.2	0.1

- e.g., $P(X=2, Y=3)=$?, $P(X=3, Y=1)=$?, \ldots
- Given the joint PMF, can we compute $P(X=x)$ and $P(Y=y)$?

$$
\begin{aligned}
& p_{X}(x)=P(X=x)=\sum_{y} P(X=x, Y=y) \\
& p_{Y}(y)=P(Y=y)=\sum_{x} P(X=x, Y=y)
\end{aligned}
$$

- If we start with the joint PMF of X and Y, we say $p_{X}(x)$ is the marginal PMF of X and $p_{Y}(y)$ is the marginal PMF of Y.

Computing Marginals from the Joint Distribution

- Suppose Y takes the values $y_{1}, y_{2}, \ldots, y_{N}$, then

$$
\left\{Y=y_{1}\right\},\left\{Y=y_{2}\right\}, \ldots,\left\{Y=y_{N}\right\}
$$

form partitions of Ω_{Y}.

- Hence, $\{X=x\}$ can be partitioned into

$$
\{X=x\} \cap\left\{Y=y_{1}\right\},\{X=x\} \cap\left\{Y=y_{2}\right\}, \ldots,\{X=x\} \cap\left\{Y=y_{N}\right\}
$$

- Therefore,

$$
\begin{aligned}
P(X=x)= & P(\{X=x\}) \\
= & P\left(\{X=x\} \cap\left\{Y=y_{1}\right\}\right)+P\left(\{X=x\} \cap\left\{Y=y_{2}\right\}\right) \\
& \quad \cdots+P\left(\{X=x\} \cap\left\{Y=y_{N}\right\}\right) \\
= & \sum_{y} P(\{X=x\} \cap\{Y=y\})=\sum_{y} P(X=x, Y=y)
\end{aligned}
$$

Marginal PMFs

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$					X	$\mathrm{P}(\mathrm{X})$
X\Y	1	2	3	4		
1	0.1	0.1	0	0.2	1	0.4
2	0.05	0.05	0.1	0	2	0.2
3	0	0.1	0.2	0.1	3	0.4

Marginal PMFs

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0.2
2	0.05	0.05	0.1	0
3	0	0.1	0.2	0.1

Y	1	2	3	4
$\mathrm{P}(\mathrm{Y})$	0.15	0.25	0.3	0.3

Example 1

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0
2	0	0.05	0.1	0.05
3	0.1	0.2	0.2	0.1

What's the value of $P(X=2, Y=3)$?
A: 0
B: 0.1
C: 0.05
D: 0.2
E: 1
Answer is B.

Example 2

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0
2	0	0.05	0.1	0.05
3	0.1	0.2	0.2	0.1

What's the value of $P(X=3)$?
A: 0.1
B: 0.4
C: 0.05
D: 0.6
E: 1
Answer is D.

Conditional PMFs

- Conditional PMF of X given Y :

$$
P(X=i \mid Y=j)=P(\{X=i\} \mid\{Y=j\})
$$

- Compute $P(X \mid Y)$ using the definition of conditional probability:

$$
P(X=i \mid Y=j)=\frac{P(X=i, Y=j)}{P(Y=j)}
$$

since for any two events A, B we have $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.

- The conditional probability $P(X=i \mid Y=j)$ is the joint probability $P(X=i, Y=j)$ normalized by the marginal $P(Y=j)$.
- An equivalent definition of independence is X and Y are independent if

$$
\text { for all } i, j, \quad P(X=i \mid Y=j)=P(X=i)
$$

Conditional PMFs

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0.2
2	0.05	0.05	0.1	0
3	0	0.1	0.2	0.1
	1	2	3	4
$\mathrm{P}(\mathrm{Y})$	0.15	0.25	0.3	0.3

$P(X \mid Y)$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.66	0.4	0	0.66
2	0.33	0.2	0.33	0
3	0	0.4	0.66	0.33

Functions of Two Random Variables

Given two random variables X and Y and a function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
Z=f(X, Y)
$$

is a new random variable. For example, pick random students and let X be their height and Y be their weight. If we define Z as the Body Mass Index (BMI) where

$$
\mathrm{BMI}=\text { weight }(\mathrm{lb}) /(\text { height }(\text { in }))^{2} \times 703 .
$$

That is,

$$
Z=f(X, Y)=Y / X^{2} \times 703
$$

Then, Z is also a random variable.

Functions of Two Random Variables

The PMF of Z can be expressed as

$$
p_{Z}(z)=\sum_{\{(x, y) \mid f(x, y)=z\}} p_{X, Y}(x, y) .
$$

For example, let us define a new random variable $Z=X \times Y$ where the joint PMF of X and Y is

$\mathrm{P}(\mathrm{X}, \mathrm{Y})$				
$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0.1	0	0
2	0	0.05	0.1	0.05
3	0.1	0.2	0.2	0.1

Then, the PMF of Z looks like

Z	1	2	3	4	6	8	9	12
$P(Z)$	0.1	0.1	0.1	0.05	0.3	0.05	0.2	0.1

Expectation and Variance of Two Random Variables

- The expected value and variance of Z can be respectively computed as

$$
\begin{gathered}
E(Z)=\sum_{z} z P(Z=z)=\sum_{x, y} f(x, y) P(X=x, Y=y) \\
\quad=\sum_{x} \sum_{y} f(x, y) P(X=x, Y=y) \\
=\sum_{y} \sum_{x} f(x, y) P(X=x, Y=y)
\end{gathered}
$$

and

$$
\operatorname{var}(Z)=E\left(Z^{2}\right)-(E(Z))^{2}
$$

- If X and Y are independent, for all x, y

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Linearity of Expectation

- Lemma: Given two random variables X, Y, and $Z=X+Y$ then

$$
E[Z]=E[X+Y]=E[X]+E[Y]
$$

- Proof: Generalized expected value rule.

$$
\begin{aligned}
E[Z] & =\sum_{a} \sum_{b}(a+b) \cdot P(X=a, Y=b) \\
& =\sum_{a} \sum_{b} a \cdot P(X=a, Y=b)+\sum_{a} \sum_{b} b \cdot P(X=a, Y=b) \\
& =\sum_{a} a \sum_{b} P(X=a, Y=b)+\sum_{b} b \sum_{a} P(X=a, Y=b) \\
& =\sum_{a} a P(X=a)+\sum_{b} b P(Y=b) \\
& =E(X)+E(Y)
\end{aligned}
$$

Expectation of Products of Independent Variables

- Lemma: If X and Y are independent then $E[X Y]=E[X] E[Y]:$
- Proof:

$$
\begin{aligned}
E[X Y] & =\sum_{a} \sum_{b} a b \cdot P(X=a, Y=b) \\
& =\sum_{a} \sum_{b} a b \cdot P(X=a) P(Y=b) \\
& =\sum_{a} a \cdot P(X=a) \cdot \sum_{b} b \cdot P(Y=b) \\
& =E[X] E[Y]
\end{aligned}
$$

Variance of Sums of Random Variables

- Lemma: If X and Y are independent then

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
$$

- Proof:

$$
\begin{aligned}
\operatorname{var}(X+Y)= & E\left[(X+Y)^{2}\right]-E[X+Y]^{2} \\
= & E\left[X^{2}+2 X Y+Y^{2}\right]-(E[X]+E[Y])^{2} \\
= & E\left[X^{2}\right]+2 E[X] E[Y]+E\left[Y^{2}\right] \\
& -\left(E[X]^{2}+2 E[X] E[Y]+E[Y]^{2}\right) \\
= & E\left[X^{2}\right]-E[X]^{2}+E\left[Y^{2}\right]-E[Y]^{2} \\
= & \operatorname{var}(X)+\operatorname{var}(Y)
\end{aligned}
$$

