COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon

University of Massachusetts at Amherst

Spring 2019

Lecture 12: Multiple Random Variables

Recall: Random Variable

• A *random variable* is a function that maps from the sample space to the real numbers,

$$X:\Omega\to\mathbb{R}$$

Multiple Random Variables

- Consider two random variables, X and Y associated with the same experiment.
- For $x, y \in \mathbb{R}$, we can define events of the form

$$\{X = x, Y = y\} = \{X = x\} \cap \{Y = y\}$$

• The probabilities of these events give the **joint PMF** of *X* and *Y*:

 $p_{X,Y}(x,y) = P(X = x, Y = y) = P(X = x \text{ and } Y = y) = P(\{X = x\} \cap \{Y = y\})$

• Useful for describing **multiple properties** over the outcome space of a single experiment, e.g., pick a random student and let X be their height and Y be their weight.

Tabular Representation of Joint PMFs

P(X,Y)							
X\Y	Y = 1	<i>Y</i> = 2	<i>Y</i> = 3	<i>Y</i> = 4			
X = 1	0.1	0.1	0	0.2			
<i>X</i> = 2	0.05	0.05	0.1	0			
<i>X</i> = 3	0	0.1	0.2	0.1			

- e.g., P(X = 2, Y = 3) = ?, P(X = 3, Y = 1) = ?, ...
- Given the joint PMF, can we compute P(X = x) and P(Y = y)?

$$p_X(x) = P(X = x) = \sum_y P(X = x, Y = y)$$

 $p_Y(y) = P(Y = y) = \sum_x P(X = x, Y = y)$

 If we start with the joint PMF of X and Y, we say p_X(x) is the marginal PMF of X and p_Y(y) is the marginal PMF of Y.

Computing Marginals from the Joint Distribution

• Suppose Y takes the values y_1, y_2, \ldots, y_N , then

$$\{Y = y_1\}, \{Y = y_2\}, \dots, \{Y = y_N\}$$

form partitions of Ω_Y .

• Hence, $\{X = x\}$ can be partitioned into

$${X = x} \cap {Y = y_1}, {X = x} \cap {Y = y_2}, \dots, {X = x} \cap {Y = y_N}$$

• Therefore,

$$P(X = x) = P(\{X = x\})$$

= $P(\{X = x\} \cap \{Y = y_1\}) + P(\{X = x\} \cap \{Y = y_2\})$
...+ $P(\{X = x\} \cap \{Y = y_N\})$
= $\sum_{y} P(\{X = x\} \cap \{Y = y\}) = \sum_{y} P(X = x, Y = y)$

Marginal PMFs

P(X,Y)							
X\Y	1	2	3	4		Х	P(X)
1	0.1	0.1	0	0.2		1	0.4
2	0.05	0.05	0.1	0		2	0.2
3	0	0.1	0.2	0.1		3	0.4

Marginal PMFs

Y	1	2	3	4	
P(Y)	0.15	0.25	0.3	0.3	

Example 1

What's the value of P(X = 2, Y = 3)?

A: 0

- B: 0.1
- C: 0.05
- D: 0.2
- E: 1

Answer is B.

Example 2

What's the value of P(X = 3)?

- A: 0.1
- B: 0.4
- C: 0.05
- D: 0.6
- E: 1

Answer is D.

Conditional PMFs

• Conditional PMF of X given Y:

$$P(X = i | Y = j) = P(\{X = i\} | \{Y = j\}).$$

• Compute *P*(*X*|*Y*) using the definition of conditional probability:

$$P(X = i | Y = j) = \frac{P(X = i, Y = j)}{P(Y = j)}$$

since for any two events A, B we have $P(A|B) = \frac{P(A \cap B)}{P(B)}$.

- The conditional probability P(X = i | Y = j) is the joint probability P(X = i, Y = j) normalized by the marginal P(Y = j).
- An equivalent definition of independence is X and Y are independent if

for all
$$i, j$$
, $P(X = i | Y = j) = P(X = i)$

Conditional PMFs

P(X,Y)								
X\Y 1 2 3 4								
1	0.1	0.1	0	0.2				
2	0.05	0.05	0.1	0				
3	0	0.1	0.2	0.1				

Y	1	2	3	4	
P(Y)	0.15	0.25	0.3	0.3	

P(X Y)							
X \Y 1 2 3 4							
1	0.66	0.4	0	0.66			
2	0.33	0.2	0.33	0			
3	0	0.4	0.66	0.33			

Functions of Two Random Variables

Given two random variables X and Y and a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

$$Z = f(X, Y)$$

is a new random variable. For example, pick random students and let X be their height and Y be their weight. If we define Z as the Body Mass Index (BMI) where

$$BMI = weight (lb)/(height (in))^2 \times 703.$$

That is,

$$Z = f(X, Y) = Y/X^2 \times 703.$$

Then, Z is also a random variable.

Functions of Two Random Variables

The PMF of Z can be expressed as

$$p_Z(z) = \sum_{\{(x,y)|f(x,y)=z\}} p_{X,Y}(x,y).$$

For example, let us define a new random variable $Z = X \times Y$ where the joint PMF of X and Y is

P(X,Y)							
X\Y 1 2 3 4							
1	0.1	0.1	0	0			
2	0	0.05	0.1	0.05			
3	0.1	0.2	0.2	0.1			

Then, the PMF of Z looks like

Ζ	1	2	3	4	6	8	9	12
P(Z)	0.1	0.1	0.1	0.05	0.3	0.05	0.2	0.1

Expectation and Variance of Two Random Variables

• The expected value and variance of Z can be respectively computed as

$$E(Z) = \sum_{z} zP(Z = z) = \sum_{x,y} f(x,y)P(X = x, Y = y)$$
$$= \sum_{x} \sum_{y} f(x,y)P(X = x, Y = y)$$
$$= \sum_{y} \sum_{x} f(x,y)P(X = x, Y = y)$$

and

$$var(Z) = E(Z^2) - (E(Z))^2.$$

• If X and Y are **independent**, for all x, y

$$P(X = x, Y = y) = P(X = x)P(Y = y).$$

Linearity of Expectation

• Lemma: Given two random variables X, Y, and Z = X + Y then

$$E[Z] = E[X + Y] = E[X] + E[Y]$$

• Proof: Generalized expected value rule.

$$E[Z] = \sum_{a} \sum_{b} (a+b) \cdot P(X = a, Y = b)$$

=
$$\sum_{a} \sum_{b} a \cdot P(X = a, Y = b) + \sum_{a} \sum_{b} b \cdot P(X = a, Y = b)$$

=
$$\sum_{a} a \sum_{b} P(X = a, Y = b) + \sum_{b} b \sum_{a} P(X = a, Y = b)$$

=
$$\sum_{a} aP(X = a) + \sum_{b} bP(Y = b)$$

=
$$E(X) + E(Y)$$

Expectation of Products of Independent Variables

• Lemma: If X and Y are independent then E[XY] = E[X]E[Y]:

• Proof:

$$E[XY] = \sum_{a} \sum_{b} ab \cdot P(X = a, Y = b)$$

=
$$\sum_{a} \sum_{b} ab \cdot P(X = a)P(Y = b)$$

=
$$\sum_{a} a \cdot P(X = a) \cdot \sum_{b} b \cdot P(Y = b)$$

=
$$E[X]E[Y]$$

Variance of Sums of Random Variables

• Lemma: If X and Y are independent then

$$var(X + Y) = var(X) + var(Y)$$

• Proof:

$$var(X + Y) = E[(X + Y)^{2}] - E[X + Y]^{2}$$

= $E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$
= $E[X^{2}] + 2E[X]E[Y] + E[Y^{2}]$
 $- (E[X]^{2} + 2E[X]E[Y] + E[Y]^{2})$
= $E[X^{2}] - E[X]^{2} + E[Y^{2}] - E[Y]^{2}$
= $var(X) + var(Y)$