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Lecture 12: Multiple Random Variables



Recall: Random Variable

• A random variable is a function that maps from the sample
space to the real numbers,

X : Ω→ R
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Multiple Random Variables

• Consider two random variables, X and Y associated with the
same experiment.

• For x , y ∈ R, we can define events of the form

{X = x ,Y = y} = {X = x} ∩ {Y = y}

• The probabilities of these events give the joint PMF of X
and Y :

pX ,Y (x , y) = P(X = x ,Y = y) = P(X = x and Y = y) = P({X = x}∩{Y = y})

• Useful for describing multiple properties over the outcome
space of a single experiment, e.g., pick a random student and
let X be their height and Y be their weight.
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Tabular Representation of Joint PMFs

P(X,Y)

X\Y Y = 1 Y = 2 Y = 3 Y = 4

X = 1 0.1 0.1 0 0.2

X = 2 0.05 0.05 0.1 0

X = 3 0 0.1 0.2 0.1

• e.g., P(X = 2,Y = 3) = ?, P(X = 3,Y = 1) = ?, ...
• Given the joint PMF, can we compute P(X = x) and
P(Y = y)?

pX (x) = P(X = x) =
∑
y

P(X = x ,Y = y)

pY (y) = P(Y = y) =
∑
x

P(X = x ,Y = y)

• If we start with the joint PMF of X and Y , we say pX (x) is
the marginal PMF of X and pY (y) is the marginal PMF of
Y .
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Computing Marginals from the Joint Distribution

• Suppose Y takes the values y1, y2, . . . , yN , then

{Y = y1}, {Y = y2}, . . . , {Y = yN}

form partitions of ΩY .

• Hence, {X = x} can be partitioned into

{X = x} ∩ {Y = y1}, {X = x} ∩ {Y = y2}, . . . , {X = x} ∩ {Y = yN}

• Therefore,

P(X = x) = P({X = x})
= P({X = x} ∩ {Y = y1}) + P({X = x} ∩ {Y = y2})

. . .+ P({X = x} ∩ {Y = yN})

=
∑
y

P({X = x} ∩ {Y = y}) =
∑
y

P(X = x ,Y = y)
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Marginal PMFs

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0.2

2 0.05 0.05 0.1 0

3 0 0.1 0.2 0.1

X P(X)

1 0.4

2 0.2

3 0.4
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Marginal PMFs

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0.2

2 0.05 0.05 0.1 0

3 0 0.1 0.2 0.1

Y 1 2 3 4

P(Y) 0.15 0.25 0.3 0.3
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Example 1

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0

2 0 0.05 0.1 0.05

3 0.1 0.2 0.2 0.1

What’s the value of P(X = 2,Y = 3)?

A: 0

B: 0.1

C: 0.05

D: 0.2

E: 1

Answer is B.
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Example 2

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0

2 0 0.05 0.1 0.05

3 0.1 0.2 0.2 0.1

What’s the value of P(X = 3)?

A: 0.1

B: 0.4

C: 0.05

D: 0.6

E: 1

Answer is D.
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Conditional PMFs

• Conditional PMF of X given Y :

P(X = i |Y = j) = P({X = i}|{Y = j}) .

• Compute P(X |Y ) using the definition of conditional
probability:

P(X = i |Y = j) =
P(X = i ,Y = j)

P(Y = j)

since for any two events A,B we have P(A|B) = P(A∩B)
P(B) .

• The conditional probability P(X = i |Y = j) is the joint
probability P(X = i ,Y = j) normalized by the marginal
P(Y = j).

• An equivalent definition of independence is X and Y are
independent if

for all i , j , P(X = i |Y = j) = P(X = i)
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Conditional PMFs

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0.2

2 0.05 0.05 0.1 0

3 0 0.1 0.2 0.1

Y 1 2 3 4

P(Y) 0.15 0.25 0.3 0.3

P(X |Y )

X \Y 1 2 3 4

1 0.66 0.4 0 0.66

2 0.33 0.2 0.33 0

3 0 0.4 0.66 0.33
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Functions of Two Random Variables

Given two random variables X and Y and a function
f : R× R→ R,

Z = f (X ,Y )

is a new random variable. For example, pick random students and
let X be their height and Y be their weight. If we define Z as the
Body Mass Index (BMI) where

BMI = weight (lb)/(height (in))2 × 703.

That is,
Z = f (X ,Y ) = Y /X 2 × 703.

Then, Z is also a random variable.
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Functions of Two Random Variables

The PMF of Z can be expressed as

pZ (z) =
∑

{(x ,y)|f (x ,y)=z}

pX ,Y (x , y).

For example, let us define a new random variable Z = X × Y
where the joint PMF of X and Y is

P(X,Y)

X\Y 1 2 3 4

1 0.1 0.1 0 0

2 0 0.05 0.1 0.05

3 0.1 0.2 0.2 0.1

Then, the PMF of Z looks like

Z 1 2 3 4 6 8 9 12

P(Z ) 0.1 0.1 0.1 0.05 0.3 0.05 0.2 0.1
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Expectation and Variance of Two Random Variables

• The expected value and variance of Z can be respectively
computed as

E (Z ) =
∑
z

zP(Z = z) =
∑
x ,y

f (x , y)P(X = x ,Y = y)

=
∑
x

∑
y

f (x , y)P(X = x ,Y = y)

=
∑
y

∑
x

f (x , y)P(X = x ,Y = y)

and
var(Z ) = E (Z 2)− (E (Z ))2.

• If X and Y are independent, for all x , y

P(X = x ,Y = y) = P(X = x)P(Y = y).
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Linearity of Expectation

• Lemma: Given two random variables X , Y , and Z = X + Y
then

E [Z ] = E [X + Y ] = E [X ] + E [Y ]

• Proof: Generalized expected value rule.

E [Z ] =
∑
a

∑
b

(a + b) · P(X = a,Y = b)

=
∑
a

∑
b

a · P(X = a,Y = b) +
∑
a

∑
b

b · P(X = a,Y = b)

=
∑
a

a
∑
b

P(X = a,Y = b) +
∑
b

b
∑
a

P(X = a,Y = b)

=
∑
a

aP(X = a) +
∑
b

bP(Y = b)

= E (X ) + E (Y )
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Expectation of Products of Independent Variables

• Lemma: If X and Y are independent then
E [XY ] = E [X ]E [Y ]:

• Proof:

E [XY ] =
∑
a

∑
b

ab · P(X = a,Y = b)

=
∑
a

∑
b

ab · P(X = a)P(Y = b)

=
∑
a

a · P(X = a) ·
∑
b

b · P(Y = b)

= E [X ]E [Y ]
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Variance of Sums of Random Variables

• Lemma: If X and Y are independent then

var(X + Y ) = var(X ) + var(Y )

• Proof:

var(X + Y ) = E [(X + Y )2]− E [X + Y ]2

= E [X 2 + 2XY + Y 2]− (E [X ] + E [Y ])2

= E [X 2] + 2E [X ]E [Y ] + E [Y 2]

− (E [X ]2 + 2E [X ]E [Y ] + E [Y ]2)

= E [X 2]− E [X ]2 + E [Y 2]− E [Y ]2

= var(X ) + var(Y )
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