COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan
University of Massachusetts at Amherst

Spring 2019

Lecture 11: Functions of Random Variables

Recap: Expected Value

- For a random variable X, the expected value is defined to be:

$$
E[X]=\sum_{x \in \mathbb{R}} x P(X=x)
$$

i.e., the probability-weighted average of the possible values of X.

- $E[X]$ is also called the expectation or mean of X.
- Why do we care to know about the expected value?
- Given a certain PMF, what is the "average" outcome that I am expecting to have?
- For example, if I bet the same amount of money on roulette and play it for a long-term period, how much do I expect to make?
- For a long-term period, can you make money from casino?

Recap: Variance

- Definition: Variance measures how far we expect a random variable to be from its average:

$$
\operatorname{var}(X)=E\left[(X-E[X])^{2}\right]=\sum_{k}(k-E[X])^{2} \cdot P(X=k)
$$

- An equivalent definition is

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}
$$

- Definition: we generally define the $\mathbf{n}^{\text {th }}$ moment of X as $E\left[X^{n}\right]$, the expected value of the random variable X^{n}.

Variance of Common Random Variables

- Bernoulli: $\operatorname{var}[X]=p(1-p)$
- Binomial: $\operatorname{var}[X]=n p(1-p)$
- Geometric: $\operatorname{var}[X]=\frac{1-p}{p^{2}}$
- Uniform: $\operatorname{var}[X]=\frac{(b-a+1)^{2}-1}{12}$
- Poisson: $\operatorname{var}[X]=\lambda$

Exercise: Variance of the Bernoulli

- PMF of the Bernoulli can be written as

$$
p_{X}(k)=\left\{\begin{array}{l}
p, \text { if } k=1 \\
1-p, \text { if } k=0
\end{array}\right.
$$

- $\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}$ where
- $E[X]=1 \times p+0 \times(1-p)=p$ and $E\left[X^{2}\right]=1^{2} \times p+0^{2} \times(1-p)=p$.
- Thus, $\operatorname{var}(X)=p-p^{2}$.

Standard Deviation

- The term standard deviation simply refers to the positive square root of the variance, which always exists and is also positive:

$$
\operatorname{std}(X)=\sqrt{\operatorname{var}(X)}
$$

- The standard deviation is also a measure of dispersion around the mean.
- One reason that people like to report standard deviations instead of variances is that the units are the same as X.
- $\operatorname{var}(X)=E\left[(X-E[X])^{2}\right]$ vs. $\operatorname{std}(X)=\sqrt{E\left[(X-E[X])^{2}\right]}$
- Example 1: If X is height in feet, then $\operatorname{var}(X)$ has units in square feet while $\operatorname{std}(X)$ again has units in feet.

Functions of Random Variables

- If X is a random variable and $f: \mathbb{R} \rightarrow \mathbb{R}$ then

$$
Y=f(X)
$$

is also a random variable with PMF:

$$
P(Y=k)=P(f(X)=k)=\sum_{o \in \Omega \text { with } f(X(o))=k} P(o)
$$

- Example, let X represent an outcome from a 6 sided fair die where

$$
P(X=i)=1 / 6, \forall i .
$$

Suppose that you will receive money that is the square of the outcome, and we define a r.v. Y as the amount of money.

- This function $Y=f(X)$ can be expressed as

$$
Y=X^{2}
$$

Functions of Random Variables

- Note that Y is also a random variable, whose PMF looks like.

Functions of Random Variables

- Expectation of $Y=f(X)$:

$$
\begin{gathered}
E[Y]=\sum_{y} y P(Y=y)=\sum_{y} y P\left(X=f^{-1}(y)\right) \\
=\sum_{x} f(x) P(X=x)
\end{gathered}
$$

- For the previous example,

$$
\begin{gathered}
E[X]=1 \times 1 / 6+2 \times 1 / 6+\cdots+6 \times 1 / 6=3.5 \\
E[Y]=1^{2} \times 1 / 6+2^{2} \times 1 / 6+\cdots+6^{2} \times 1 / 6=\$ 15.2
\end{gathered}
$$

Functions of Random Variables

- Variance of Y :

$$
\begin{aligned}
\operatorname{var}[Y] & =E\left[(Y-E[Y])^{2}\right]=\sum_{k \in\{1,4, \ldots, 36\}}(k-E[Y])^{2} \cdot P(Y=k) \\
& =\sum_{k \in\{1,4, \ldots, 36\}}(k-E[Y])^{2} \cdot P\left(X=f^{-1}(k)\right) \\
& =(1-E[Y])^{2} P(X=\sqrt{1})+(4-E[Y])^{2} P(X=\sqrt{4})+\cdots
\end{aligned}
$$

- For the previous example,

$$
\begin{gathered}
E[X]=1 \times 1 / 6+2 \times 1 / 6+\cdots+6 \times 1 / 6=3.5 \\
E[Y]=1^{2} \times 1 / 6+2^{2} \times 1 / 6+\cdots+6^{2} \times 1 / 6=\$ 15.2
\end{gathered}
$$

- Then, the variance for Y is

$$
\begin{gathered}
\operatorname{var}[Y]=\left(1^{2}-15.2\right)^{2} \times 1 / 6+\left(2^{2}-15.2\right)^{2} \times 1 / 6+\cdots \\
+\left(6^{2}-15.2\right)^{2} \times 1 / 6=149.1
\end{gathered}
$$

Example: Linear function

- If $Y=a X+b$, then $E[Y]=a E[X]+b$ and $\operatorname{var}[Y]=a^{2} \operatorname{var}[X]$

$$
\begin{aligned}
\operatorname{var}[Y] & =\operatorname{var}[a X+b] \\
& =\sum_{k}(a k+b-E[a X+b])^{2} P(X=k) \\
& =\sum_{k}(a k+b-a E[X]-b)^{2} P(X=k) \\
& =\sum_{k}(a k-a E[X])^{2} P(X=k) \\
& =a^{2} \sum_{k}(k-E[X])^{2} P(X=k) \\
& =a^{2} \operatorname{var}[X] .
\end{aligned}
$$

Example 2.4: Average Speed vs Average Time

- Expected values often provide a convenient vehicle to optimize a decision making process.
- We actually do this in our real-world life
- Should I detour at the next intersection to minimize the travel time? (i.e. what is the expected travel time for 1) going straight or 2) detouring?
- Problem: If the weather is good (which happens with probability 0.6), Alice walks the 2 miles to class at a speed of $V=5 \mathrm{MPH}$, and otherwise rides her motorcycle at a speed of $V=30 \mathrm{MPH}$. What is the mean of the time T to get to class?

Example 2.4: Average Speed vs Average Time

- Problem: If the weather is good (which happens with probability 0.6), Alice walks the 2 miles to class at a speed of $V=5 \mathrm{MPH}$, and otherwise rides her motorcycle at a speed of $V=30 \mathrm{MPH}$. What ist he mean of the time T to get to class?
- We can derive PMF of V as the following.

$$
P_{v}(v)=\left\{\begin{array}{l}
0.6, v=5 \\
0.4, v=30
\end{array}\right.
$$

- The mean of the speed V can be computed as

$$
E(V)=0.6 \times 5+0.4 \times 30=15 \mathrm{MPH}
$$

- Since $T=D / V$ where $D=2$

$$
T=f(V)=2 / V
$$

- Thus,

$$
E(T)=\frac{2}{5} \times 0.6+\frac{2}{30} \times 0.4=\frac{4}{15} \text { Hours }
$$

