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Lecture 10: Expectation and Variance



Recap: Common Discrete Random Variables

• Uniform: For k = a, . . . , b:

P(X = k) =
1

b − a + 1

• Bernoulli: For k = 0 or 1:

P(X = k) =

{
1− p if k = 0
p if k = 1

• Binomial: For k = 0, . . . ,N

P(X = k) =

(
N

k

)
pk (1− p)N−k

• Geometric: For k = 1, 2, 3, . . ., P(X = k) = (1− p)k−1 · p
• Poisson: P(X = k) = e−λ λk

k! for k = 0, 1, 2, . . .
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Expected Value

• For a random variable X , the expected value is defined to be:

E [X ] =
∑
x∈R

x P(X = x)

i.e., the probability-weighted average of the possible values of
X .

• E [X ] is also called the expectation or mean of X .

• Why do we care to know about the expected value?

• Given a certain PMF, what is the ”average” outcome that I
am expecting to have?

• For example, if I bet the same amount of money on roulette
and play it for a long-term period, how much do I expect to
make?

• For a long-term period, can you make money from casino?
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Expected Value: Question

• Expectation:

E [X ] =
∑
k∈R

k P(X = k)

• If X maps to {1, 2, 6} and

P(X = 1) = 1/3 , P(X = 2) = 1/2 , P(X = 6) = 1/6

then is the expectation:

A) 2 B) 2.33 . . . C ) 3 D) 3.5 E ) 3.66 . . .

• Answer is E [X ] = 1 · 13 + 2 · 12 + 6 · 16 = 2.33 . . .
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Example: Expected Winnings in Games of Chance

• Suppose you play a simple game with your friend where you
flip a coin. If the coin is heads, your friend pays you a dollar.
If it’s tails, you pay your friend a dollar.

• In any game of chance like this, you might be interested in
how much money you might win or lose per round on average
if you played many rounds.

• Suppose you play N rounds of the game and you win NW

times and lose NL times. Your average payoff would be:

NL(−1) + NW (1)

N
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Example: Expected Winnings in Games of Chance

• As the number of rounds increases, you will see that NW /N
converges to the probability of heads p, while NL/N converges
to the probability of tails (1− p).

• Let X be a random variable mapping the outcomes {H,T} to
the payoff values {1,−1}. The limiting value of your average
payoff converges to a number called the expected value of
the random variable X :

E [X ] = P(X = −1)(−1) + P(X = 1)(1)

• If the coin is fair, your expected winnings are:

E [X ] = P(X = −1)(−1) + P(X = 1)(1)

= (0.5)(−1) + (0.5)(1) = 0
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Example: Expected Winnings in Games of Chance

• Suppose your friend decides to trick you and swaps the fair
coin for a biased coin that comes up tails with probability 0.7.
How does this change your expected winnings?

• Your expected winnings are now computed as follows:

E [X ] = P(X = −1)(−1) + P(X = 1)(1)

= (0.7)(−1) + (0.3)(1)

= −0.4

• The interpretation is that over many many rounds of play
with the biased coin, you would expect to lose forty cents per
round on average.
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Can You Make Money from Roulette?
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One Challenging Problem on Expectation

We randomly pick 3 numbers from 10 integer numbers 1, 2, 3, 4,
...,10.
If the largest number among the 3 picked out is denoted as L,
what is the expected value of L?
Answer:

P(X = L) =

0 if L < 3
1·(L−1

2 )
(103 )

if L ≥ 3

E (X ) =
10∑
k=3

k · P(X = k) =
10∑
k=3

k

(k−1
2

)(10
3

)
=

10∑
k=3

k

(k−1)!
(k−1−2)!·2!(10

3

) =
10∑
k=3

k(k − 1)(k − 2)

2 ·
(10
3

)
= 8.25
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Expectations of Common Random Variables

• Uniform on {a, a + 1, . . . , b}: E [X ] = a+b
2

• Bernoulli: E [X ] = (1− p) · 0 + p · 1 = p

• Binomial: E [X ] =
∑n

k=0 k ·
(n
k

)
pk(1− p)n−k = np

• Geometric: E [X ] =
∑∞

k=1 k · (1− p)k−1p = 1
p

• Poisson: E [X ] =
∑∞

k=0 k ·
e−λ

k! λ
k = λ

11 / 22



Uniform Expectation

E [X ] =
b∑

k=a

kP(X = k)

=
b∑

k=a

k · 1

b − a + 1

=
1

b − a + 1

b∑
k=a

k

=
1

b − a + 1
· (a + b)(b − a + 1)

2

=
a + b

2
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Binomial Expectation

E [X ] =
n∑

k=0

(
n

k

)
pk(1− p)n−k · k

= 0 +
n∑

k=1

(
n

k

)
pk(1− p)n−k · k

=
n∑

k=1

n(n − 1) · · · (n − k + 1)

k!
pk(1− p)n−k · k

= np
n∑

k=1

(n − 1) · · · (n − k + 1)

(k − 1)!
p(k−1)(1− p)n−k ...let l = k − 1 and m = n − 1

= np
m∑
l=0

m · · · (m − l + 1)

(l)!
pl(1− p)m−l

= np
m∑
l=0

m!

(l)!(m − l)!
pl(1− p)m−l

= np · 1 = np
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Geometric Expectation

E [X ] =
∞∑
k=1

k · (1− p)k−1p

=
∞∑
k=1

(1− p)k−1p +
∞∑
k=1

(k − 1) · (1− p)k−1p

= 1 + (1− p)
∞∑
k=2

(k − 1) · (1− p)k−2p

= 1 + (1− p)(1 · P(X = 1) + 2 · P(X = 2) + 3 · P(X = 3) + . . .)

= 1 + (1− p)E [X ]

and so E [X ] = 1/p.
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Poisson Expectation

E [X ] =
∞∑
k=0

k · e
−λ

k!
λk = 0 +

∞∑
k=1

k · e
−λ

k!
λk

=
∞∑
k=1

e−λ

(k − 1)!
λk

=
∞∑
k=1

e−λ

(k − 1)!
λ(k−1) · λ

= λ
∞∑
k=1

e−λ

(k − 1)!
λk−1

Let m = k − 1

= λ

∞∑
m=0

e−λ

(m)!
λm

= λ · (P(X = 0) + P(X = 1) + P(X = 2) + . . .)

= λ
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Properties of Expectation

• Linearity of Expectation: If a and b are any real values,
then the expectation of aX + b is:

E [aX + b] = a · E [X ] + b

• Expectation of Expectation: Applying the expectation
operator more than once has no effect. E [E [X ]] = E [X ] since
E [X ] is already a constant.
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Variance

• Definition: Variance measures how far we expect a random
variable to be from its average.

• It measures the expectation of the squared deviation of a
random variable from its mean.

var(X ) = E [(X − E [X ])2] =
∑
k

(k − E [X ])2 · P(X = k)

• An equivalent definition is

var(X ) = E [X 2]− E [X ]2

(Proof?)
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Variance

• Definition: Variance measures how far we expect a random
variable to be from its average:

var(X ) = E [(X − E [X ])2] =
∑
k

(k − E [X ])2 · P(X = k)

• An equivalent definition is

var(X ) = E [X 2]− E [X ]2

• Definition: we generally define the nth moment of X as
E [X n], the expected value of the random variable X n.
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Example 1

• Consider a random variable X1 where

P(X1 = 2) = 1/2 P(X1 = 3) = 1/4 P(X1 = 5) = 1/4

• The expected value is:

E [X1] =
1

2
· 2 +

1

4
· 3 +

1

4
· 5 = 3

• The variance is:

var[X1] =
1

2
· (2− 3)2 +

1

4
· (3− 3)2 +

1

4
· (5− 3)2 = 1.5
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Example 2

• Consider a random variable X2 where

P(X2 = −1) = 1/2 P(X2 = 7) = 1/2

• The expected value is:

E [X2] =
1

2
· (−1) +

1

2
· 7 = 3

• The variance is:

var[X2] =
1

2
· (−1− 3)2 +

1

2
· (7− 3)2 = 16
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Example 1 and 2

• Both examples shared the same expected value:

E [X1] =
1

2
· 2 +

1

4
· 3 +

1

4
· 5 = 3

E [X2] =
1

2
· (−1) +

1

2
· 7 = 3

• But the variances were different:

var[X1] =
1

2
· (2− 3)2 +

1

4
· (3− 3)2 +

1

4
· (5− 3)2 = 1.5

var[X2] =
1

2
· (−1− 3)2 +

1

2
· (7− 3)2 = 16

• What does this tell us?
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Example 1 and 2
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• We previously said that variance measures how far we expect
a random variable to be from its average value.
• In other words, it measures how spread the PMF looks like

with respect to the mean value.
• Why do we care about variance?
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