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Problem 1

Problem 1 (5×4=20pts): Consider the pair of random variables X and Y that are
uniformly distributed in the region E = {(x , y) : |x |+ |y | ≤ 1}, i.e.,

fX ,Y (X = x ,Y = y) =

{
c if x ∈ E ,
0 otherwise.

The following figure helps you to visualize the region E .

1. What’s the value of the constant c?

2. What’s the marginal PDF of X?

3. What’s the conditional PDF of X given Y , for 0 ≤ y ≤ 1?

4. Are X and Y independent? Justify your answer. You will not receive any points
if you write only “yes” or “no”.
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Solution for Problem 1

1. 1 = c ·Area of E = c ·
√

2
√

2 = 2c ⇒ c =
1

2
Alternatively, using the normalization axiom, and the symmetry of PDF:

2

∫ 1

0

∫ 1−x

x−1
cdydx = 2c

∫ 1

0
y

∣∣∣∣∣
1−x

x−1

dx = 2c

∫ 1

0
[(1− x)− (x − 1)] dx

= 4c

(
x −

x2

2

)∣∣∣∣∣
1

0

= 2c = 1⇒ c =
1

2

2.

fX (x) =



∫ x+1

−x−1

1

2
dy ,−1 ≤ x ≤ 0∫ 1−x

x−1

1

2
dy , 0 ≤ x ≤ 1

0 , otherwise

=


x + 1 ,−1 ≤ x ≤ 0

1− x , 0 ≤ x ≤ 1

0 , otherwise

=

{
1− |x | , x ∈ [−1, 1]

0 , x /∈ [−1, 1]
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Solution for Problem 1

3. Using a similar calculation we have

fY (y) =

{
1− |y | , y ∈ [−1, 1]

0 , y /∈ [−1, 1]

Thus,

fX |Y (X |Y = y) =


fX ,Y (x , y)

fY (y)
, x ∈ [0, 1], y ∈ [0, 1), and y − 1 ≤ x ≤ 1− y

0 , otherwise

=


1/2

1− y
, x ∈ [0, 1], y ∈ [0, 1), and y − 1 ≤ x ≤ 1− y

0 , otherwise

We can verify this is a valid PDF:

∫ 1

0

∫ 1−y

y−1

1

2(1− y)
dxdy =

∫ 1

0

x

2(1− y)

∣∣∣∣∣
1−y

y−1

dy =

∫ 1

0

(1− y)− (y − 1)

2(1− y)
dy

=

∫ 1

0
dy = y

∣∣∣1
0

= 1− 0 = 1
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Solution for Problem 1

4. X and Y are independent if fX ,Y (x , y) = fX (x) · fY (y). However, when
x , y ∈ [0, 1], fX ,Y (x , y) 6= fX (x) · fY (y), i.e.:

1

2
6= (1− x)(1− y)

Therefore, X and Y are not independent.
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Problem 2

Problem 2 (10pts): Let X and Y be two random variables, with var(X ) = 4 and
var(Y ) = 9. If we know that the two random variables Z = 2X − Y and W = X + Y
are independent, find ρ(X ,Y ), i.e., the correlation between X and Y .
Solution: Since Z and W are independent, we have cov(Z ,W ) = 0. Thus,

cov(Z ,W ) = cov(2X − Y ,X + Y )

= E [(2X − Y )(X + Y )]− E [2X − Y ]E [X + Y ]

= E [2X 2 + XY − Y 2]− (2E [X ]− E [Y ])(E [X ] + E [Y ])

= 2E [X 2] + E [XY ]− E [Y 2]− 2E [X ]2 − E [X ]E [Y ] + E [Y ]2

= 2(E [X 2]− E [X ]2) + (E [XY ]− E [X ]E [Y ])− (E [Y 2]− E [Y ]2)

= 2var(X ) + cov(X ,Y )− var(Y )

= 2 · 4 + cov(X ,Y )− 9

= cov(X ,Y )− 1

= 0⇒ cov(X ,Y ) = 1

With this, we have all the components needed to calculate the correlation.

ρ(X ,Y ) =
cov(X ,Y )√

var(X ) · var(Y )
=

1
√

4 · 9
=

1

6
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Problem 3

Problem 3 (5+5=10pts): A coin is biased so that its probability of landing on heads
is 20%. Suppose you flip it 20 times.

1. Using Markov’s bound, find a bound for the probability it lands on heads at
least 16 times.

2. Since we know that the number of times the coin lands on its heads is a
Binomial random variable, we can calculate the exact probability of the
aforementioned event is 1.38× 10−8. Therefore, you can see that the bound we
obtained is a loose one. Now, using Chebyshev’s bound, find a tighter bound for
this probability.
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Solution for Problem 3

1. Let X denote the number of times the coin lands on its head. This is a binomial
random variable with n = 20 and p = 0.2.
Thus, E [X ] = np = 4. Using this in the Markov inequality we get

p(X ≥ 16) ≤
E [X ]

16
=

4

16
= 0.25

2. var(X ) = np(1− p) = 20 · 0.2 · 0.8 = 3.2
Using this in the Chebyshev inequality we have

P(|X − E [X ]| ≥ b) ≤
var(X )

b2

P(|X − 4| ≥ b) ≤
3.2

b2

P(|X − 4| ≥ b) = P(X − 4 ≥ b) + P(X − 4 ≤ −b)

= P(X ≥ 4 + b) + P(X ≤ 4− b)
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Solution for Problem 3

Since we want to approximate P(X ≥ 16), i.e., 4 + b = 16, let’s set b = 12.

P(X ≥ 4 + b) + P(X ≤ 4− b) ≤
3.2

b2

P(X ≥ 16) + P(X ≤ −8) ≤
3.2

122

P(X ≥ 16) + 0 ≤
3.2

144

P(X ≥ 16)+ ≤ 0.022

This bound is much tighter than the Markov bound.
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Problem 4

Problem 4 (10pts): Let today’s high temperature be T . For this time of the year in
Amherst, let’s assume that T is a normal random variable with mean µ = 50 and
variance σ2 = 25. Let’s say Andrew feels comfortable if today’s high temperature is
between two integers A and B, i.e., A ≤ T ≤ B. He hasn’t been here for long and is a
little unsure about what to expect. So his lower temperature threshold A is a discrete
random variable and takes two equally-likely values: 40 and 45. Similarly, his high
temperature threshold B is also a discrete random variable and takes two equally-likely
values: 55 and 60. Further assume that A and B are independent.

What is the probability that Andrew feels comfortable today?
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Solution for Problem 4

Since A and B are independent,

P(A,B) = P(A) ·P(B) =
1

2
·

1

2
=

1

4
for (A,B) ∈ {(40, 55), (40, 60), (45, 55), (45, 60)}

Let Y denote the binary random variable that indicates whether Andrew feels
comfortable.

P(Y = 1|A = 40,B = 55) = P(A ≤ T ≤ B) = P(40 ≤ T ≤ 55)

= P

(
40− 50
√

25
≤ T ′ ≤

55− 50
√

25

)
= Φ(1)− Φ(−2) = Φ(1)− [1− Φ(2)]

= 0.84134− (1− 0.97725)

= 0.81859

where T ′ is the standardized random variable.
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Solution for Problem 4

Similarly, we can calculate

P(Y = 1|A = 40,B = 60) = Φ(2)− Φ(−2) = 0.95450

P(Y = 1|A = 45,B = 55) = Φ(1)− Φ(−1) = 0.68268

P(Y = 1|A = 45,B = 60) = Φ(2)− Φ(−1) = 0.81859

Using the total probability theorem, we have

P(Y = 1) = P(A = 40,B = 55) · P(Y = 1|A = 40,B = 55)

+ P(A = 40,B = 60) · P(Y = 1|A = 40,B = 60)

+ P(A = 45,B = 55) · P(Y = 1|A = 45,B = 55)

+ P(A = 45,B = 60) · P(Y = 1|A = 45,B = 60)

= 3.27436/4 = 0.81859

Alternatively, we could have used Φ(·) in our calculations, to get to the same result:

P(Y = 1) = Φ(1) + Φ(2)− 1 = 0.81859
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Problem EC

Problem EC (10pts): Following the setup of Problem 4, let today’s high temperature
be T . Assume that T is a normal random variable with mean µ and variance σ2 = 1.
Let’s say you don’t know today’s date, so your belief about µ follows a normal
distribution with mean m and variance δ2 = 1, i.e., P(µ) = N (m, 1). Now, at the end
of the day, you observe that today’s high temperature is actually t. Given this
information, what is your new belief of µ, i.e., what is P(µ|T = t)?

Hint: It has the same functional form as your initial belief, just different moments.
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Solution for Problem EC

Quick reminder of PDF for normal random variables:

fX (x) =
1

√
2πσ2

e
− (x−µ)2

2σ2

Using Bayes’ rule, we know that P(µ|T = t) =
P(µ,T = t)

P(T = t)
=

P(T = t|µ) · P(µ)

P(T = t)
.

The terms in this equation that we know are

P(µ) =
1
√

2π
e−

(µ−m)2

2 and P(T = t|µ) =
1
√

2π
e−

(t−µ)2

2
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Solution for Problem EC

So, we need to calculate P(T = t). We can calculate this by marginalizing over µ:

P(T = t) =

∫ ∞
−∞

P(T = t, µ)dµ =

∫ ∞
−∞

P(T = t|µ)P(µ)dµ

=

∫ ∞
−∞

1
√

2π
e
− (t−µ)2

2
1
√

2π
e
− (µ−m)2

2 dµ =
1

2π

∫ ∞
−∞

e
− (t−µ)2+(µ−m)2

2 dµ

=
1

2π

∫ ∞
−∞

e
− t2−2µt+µ2+µ2−2µm+m2

2 dµ =
1

2π

∫ ∞
−∞

e
− 2µ2−2µ(t+m)+t2+m2

2 dµ

=
1

2π

∫ ∞
−∞

e
−
[
µ2−µ(t+m)+ t2+m2

2

]
dµ =

1

2π

∫ ∞
−∞

e
−
[
µ2−µ(t+m)+( m+t

2
)2−( m+t

2
)2+ t2+m2

2

]
dµ

=
1

2π

∫ ∞
−∞

e
−
(
µ−m+t

2

)2

· e

[
−( m+t

2
)2+ t2+m2

2

]
dµ

=
1

2π
e

[
−( m+t

2
)2+ t2+m2

2

] ∫ ∞
−∞

e
−
(
µ−m+t

2

)2

dµ

=

√
1/2
√

2π
e

[
−( m+t

2
)2+ t2+m2

2

] ∫ ∞
−∞

1√
2π · 1

2

e

−

(
µ−m+t

2

)2

2· 1
2 dµ

=

√
1/2
√

2π
e

[
−( m+t

2
)2+ t2+m2

2

]
· 1

since the integral is over a normal PDF with mean
m + t

2
and variance

1

2
.
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Solution for Problem EC

Thus, we have

P(µ|T = t) =
1

2π
e−

(µ−m)2+(t−µ)2

2

√
1/2√
2π

e

[
−( m+t

2
)2+ t2+m2

2

] =
1√

2π · 1
2

e
− (µ−m+t

2 )2

2· 1
2 ∼ N

(
m + t

2
,

1

2

)

So, it’s nothing more than a different normal distribution with µ =
m + t

2
and σ2 =

1

2
.

This means that after a new observation, your new belief gets dragged in the direction
of your observation, T = t, with increased confidence (variance decreases from 1 to
1/2).
The key here is that your belief maintains the same functional form; which allows you
to update it again after another observation T = t′ , and then another one, and so
on. One can show that after n observations, the belief is still normal with

µn =
m + t1 + t2 + · · ·+ tn

n + 1
and σ2

n =
1

n + 1

which means that i) your measurement is going to be super accurate (σ2
n → 0 as

n→∞), and ii) your point estimate is going to be the sample mean (plus counting

the mean of your prior belief, m, as one additional sample).
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