# COMPSCI 240: Reasoning Under Uncertainty 

Andrew Lan and Nic Herndon<br>University of Massachusetts at Amherst

Spring 2019

## Midterm II Solution

## Problem 1

Problem 1 ( $\mathbf{5} \times \mathbf{4}=\mathbf{2 0}$ pts): Consider the pair of random variables $X$ and $Y$ that are uniformly distributed in the region $E=\{(x, y):|x|+|y| \leq 1\}$, i.e.,

$$
f_{X, Y}(X=x, Y=y)= \begin{cases}c & \text { if } x \in E \\ 0 & \text { otherwise }\end{cases}
$$

The following figure helps you to visualize the region $E$.


1. What's the value of the constant $c$ ?
2. What's the marginal PDF of $X$ ?
3. What's the conditional PDF of $X$ given $Y$, for $0 \leq y \leq 1$ ?
4. Are $X$ and $Y$ independent? Justify your answer. You will not receive any points if you write only "yes" or "no".

## Solution for Problem 1

1. $1=c \cdot$ Area of $E=c \cdot \sqrt{2} \sqrt{2}=2 c \Rightarrow c=\frac{1}{2}$

Alternatively, using the normalization axiom, and the symmetry of PDF:

$$
\begin{aligned}
2 \int_{0}^{1} \int_{x-1}^{1-x} c d y d x & =\left.2 c \int_{0}^{1} y\right|_{x-1} ^{1-x} d x=2 c \int_{0}^{1}[(1-x)-(x-1)] d x \\
& =\left.4 c\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=2 c=1 \Rightarrow c=\frac{1}{2}
\end{aligned}
$$

2. 

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{ll}
\int_{-x-1}^{x+1} \frac{1}{2} d y & ,-1 \leq x \leq 0 \\
\int_{x-1}^{1-x} \frac{1}{2} d y & , 0 \leq x \leq 1 \\
0 & , \text { otherwise }
\end{array}= \begin{cases}x+1 & ,-1 \leq x \leq 0 \\
1-x & , 0 \leq x \leq 1 \\
0 & , \text { otherwise }\end{cases} \right. \\
& = \begin{cases}1-|x| & , x \in[-1,1] \\
0 & , x \notin[-1,1]\end{cases}
\end{aligned}
$$

## Solution for Problem 1

3. Using a similar calculation we have

$$
f_{Y}(y)= \begin{cases}1-|y| & , y \in[-1,1] \\ 0 & , y \notin[-1,1]\end{cases}
$$

Thus,

$$
\begin{aligned}
f_{X \mid Y}(X \mid Y=y) & = \begin{cases}\frac{f_{X, Y}(x, y)}{f_{Y}(y)} & , x \in[0,1], y \in[0,1), \text { and } y-1 \leq x \leq 1-y \\
0 & , \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{1 / 2}{1-y} & , x \in[0,1], y \in[0,1), \text { and } y-1 \leq x \leq 1-y \\
0 & , \text { otherwise }\end{cases}
\end{aligned}
$$

We can verify this is a valid PDF:

$$
\begin{aligned}
\int_{0}^{1} \int_{y-1}^{1-y} \frac{1}{2(1-y)} d x d y & =\left.\int_{0}^{1} \frac{x}{2(1-y)}\right|_{y-1} ^{1-y} d y=\int_{0}^{1} \frac{(1-y)-(y-1)}{2(1-y)} d y \\
& =\int_{0}^{1} d y=\left.y\right|_{0} ^{1}=1-0=1
\end{aligned}
$$

## Solution for Problem 1

4. $X$ and $Y$ are independent if $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$. However, when $x, y \in[0,1], f_{X, Y}(x, y) \neq f_{X}(x) \cdot f_{Y}(y)$, i.e.:

$$
\frac{1}{2} \neq(1-x)(1-y)
$$

Therefore, $X$ and $Y$ are not independent.

## Problem 2

Problem 2 (10pts): Let $X$ and $Y$ be two random variables, with $\operatorname{var}(X)=4$ and $\operatorname{var}(Y)=9$. If we know that the two random variables $Z=2 X-Y$ and $W=X+Y$ are independent, find $\rho(X, Y)$, i.e., the correlation between $X$ and $Y$.
Solution: Since $Z$ and $W$ are independent, we have $\operatorname{cov}(Z, W)=0$. Thus,

$$
\begin{aligned}
\operatorname{cov}(Z, W) & =\operatorname{cov}(2 X-Y, X+Y) \\
& =E[(2 X-Y)(X+Y)]-E[2 X-Y] E[X+Y] \\
& =E\left[2 X^{2}+X Y-Y^{2}\right]-(2 E[X]-E[Y])(E[X]+E[Y]) \\
& =2 E\left[X^{2}\right]+E[X Y]-E\left[Y^{2}\right]-2 E[X]^{2}-E[X] E[Y]+E[Y]^{2} \\
& =2\left(E\left[X^{2}\right]-E[X]^{2}\right)+(E[X Y]-E[X] E[Y])-\left(E\left[Y^{2}\right]-E[Y]^{2}\right) \\
& =2 \operatorname{var}(X)+\operatorname{cov}(X, Y)-\operatorname{var}(Y) \\
& =2 \cdot 4+\operatorname{cov}(X, Y)-9 \\
& =\operatorname{cov}(X, Y)-1 \\
& =0 \Rightarrow \operatorname{cov}(X, Y)=1
\end{aligned}
$$

With this, we have all the components needed to calculate the correlation.

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \cdot \operatorname{var}(Y)}}=\frac{1}{\sqrt{4 \cdot 9}}=\frac{1}{6}
$$

## Problem 3

Problem 3 ( $5+5=10$ pts): A coin is biased so that its probability of landing on heads is $20 \%$. Suppose you flip it 20 times.

1. Using Markov's bound, find a bound for the probability it lands on heads at least 16 times.
2. Since we know that the number of times the coin lands on its heads is a Binomial random variable, we can calculate the exact probability of the aforementioned event is $1.38 \times 10^{-8}$. Therefore, you can see that the bound we obtained is a loose one. Now, using Chebyshev's bound, find a tighter bound for this probability.

## Solution for Problem 3

1. Let $X$ denote the number of times the coin lands on its head. This is a binomial random variable with $n=20$ and $p=0.2$.
Thus, $E[X]=n p=4$. Using this in the Markov inequality we get

$$
p(X \geq 16) \leq \frac{E[X]}{16}=\frac{4}{16}=0.25
$$

2. $\operatorname{var}(X)=n p(1-p)=20 \cdot 0.2 \cdot 0.8=3.2$

Using this in the Chebyshev inequality we have

$$
\begin{aligned}
P(|X-E[X]| \geq b) & \leq \frac{\operatorname{var}(X)}{b^{2}} \\
P(|X-4| \geq b) & \leq \frac{3.2}{b^{2}}
\end{aligned}
$$

$$
\begin{aligned}
P(|X-4| \geq b) & =P(X-4 \geq b)+P(X-4 \leq-b) \\
& =P(X \geq 4+b)+P(X \leq 4-b)
\end{aligned}
$$

## Solution for Problem 3

Since we want to approximate $P(X \geq 16)$, i.e., $4+b=16$, let's set $b=12$.

$$
\begin{aligned}
& P(X \geq 4+b)+P(X \leq 4-b) \leq \frac{3.2}{b^{2}} \\
& P(X \geq 16)+P(X \leq-8) \leq \frac{3.2}{12^{2}} \\
& P(X \geq 16)+0 \leq \frac{3.2}{144} \\
& P(X \geq 16)+\leq 0.022
\end{aligned}
$$

This bound is much tighter than the Markov bound.

## Problem 4

Problem 4 (10pts): Let today's high temperature be $T$. For this time of the year in Amherst, let's assume that $T$ is a normal random variable with mean $\mu=50$ and variance $\sigma^{2}=25$. Let's say Andrew feels comfortable if today's high temperature is between two integers $A$ and $B$, i.e., $A \leq T \leq B$. He hasn't been here for long and is a little unsure about what to expect. So his lower temperature threshold $A$ is a discrete random variable and takes two equally-likely values: 40 and 45. Similarly, his high temperature threshold $B$ is also a discrete random variable and takes two equally-likely values: 55 and 60 . Further assume that $A$ and $B$ are independent.

What is the probability that Andrew feels comfortable today?

## Solution for Problem 4

Since $A$ and $B$ are independent,
$P(A, B)=P(A) \cdot P(B)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$ for $(A, B) \in\{(40,55),(40,60),(45,55),(45,60)\}$
Let $Y$ denote the binary random variable that indicates whether Andrew feels comfortable.

$$
\begin{aligned}
P(Y=1 \mid A=40, B=55) & =P(A \leq T \leq B)=P(40 \leq T \leq 55) \\
& =P\left(\frac{40-50}{\sqrt{25}} \leq T^{\prime} \leq \frac{55-50}{\sqrt{25}}\right) \\
& =\Phi(1)-\Phi(-2)=\Phi(1)-[1-\Phi(2)] \\
& =0.84134-(1-0.97725) \\
& =0.81859
\end{aligned}
$$

where $T^{\prime}$ is the standardized random variable.

## Solution for Problem 4

Similarly, we can calculate

$$
\begin{aligned}
& P(Y=1 \mid A=40, B=60)=\Phi(2)-\Phi(-2)=0.95450 \\
& P(Y=1 \mid A=45, B=55)=\Phi(1)-\Phi(-1)=0.68268 \\
& P(Y=1 \mid A=45, B=60)=\Phi(2)-\Phi(-1)=0.81859
\end{aligned}
$$

Using the total probability theorem, we have

$$
\begin{aligned}
P(Y=1) & =P(A=40, B=55) \cdot P(Y=1 \mid A=40, B=55) \\
& +P(A=40, B=60) \cdot P(Y=1 \mid A=40, B=60) \\
& +P(A=45, B=55) \cdot P(Y=1 \mid A=45, B=55) \\
& +P(A=45, B=60) \cdot P(Y=1 \mid A=45, B=60) \\
& =3.27436 / 4=0.81859
\end{aligned}
$$

Alternatively, we could have used $\Phi(\cdot)$ in our calculations, to get to the same result:

$$
P(Y=1)=\Phi(1)+\Phi(2)-1=0.81859
$$

## Problem EC

Problem EC (10pts): Following the setup of Problem 4, let today's high temperature be $T$. Assume that $T$ is a normal random variable with mean $\mu$ and variance $\sigma^{2}=1$. Let's say you don't know today's date, so your belief about $\mu$ follows a normal distribution with mean $m$ and variance $\delta^{2}=1$, i.e., $P(\mu)=\mathcal{N}(m, 1)$. Now, at the end of the day, you observe that today's high temperature is actually $t$. Given this information, what is your new belief of $\mu$, i.e., what is $P(\mu \mid T=t)$ ?
Hint: It has the same functional form as your initial belief, just different moments.

## Solution for Problem EC

Quick reminder of PDF for normal random variables:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Using Bayes' rule, we know that $P(\mu \mid T=t)=\frac{P(\mu, T=t)}{P(T=t)}=\frac{P(T=t \mid \mu) \cdot P(\mu)}{P(T=t)}$.
The terms in this equation that we know are

$$
P(\mu)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(\mu-m)^{2}}{2}} \text { and } P(T=t \mid \mu)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(t-\mu)^{2}}{2}}
$$

## Solution for Problem EC

So, we need to calculate $P(T=t)$. We can calculate this by marginalizing over $\mu$ :

$$
\begin{aligned}
P(T=t) & =\int_{-\infty}^{\infty} P(T=t, \mu) d \mu=\int_{-\infty}^{\infty} P(T=t \mid \mu) P(\mu) d \mu \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(t-\mu)^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(\mu-m)^{2}}{2}} d \mu=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\frac{(t-\mu)^{2}+(\mu-m)^{2}}{2}} d \mu \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\frac{t^{2}-2 \mu t+\mu^{2}+\mu^{2}-2 \mu m+m^{2}}{2}} d \mu=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\frac{2 \mu^{2}-2 \mu(t+m)+t^{2}+m^{2}}{2}} d \mu \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\left[\mu^{2}-\mu(t+m)+\frac{t^{2}+m^{2}}{2}\right]} d \mu=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\left[\mu^{2}-\mu(t+m)+\left(\frac{m+t}{2}\right)^{2}-\left(\frac{m+t}{2}\right)^{2}+\frac{t^{2}+m^{2}}{2}\right]} d \mu \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\left(\mu-\frac{m+t}{2}\right)^{2}} \cdot e^{\left[-\left(\frac{m+t}{2}\right)^{2}+\frac{t^{2}+m^{2}}{2}\right]} d \mu \\
& =\frac{1}{2 \pi} e^{\left[-\left(\frac{m+t}{2}\right)^{2}+\frac{t^{2}+m^{2}}{2}\right]} \int_{-\infty}^{\infty} e^{-\left(\mu-\frac{m+t}{2}\right)^{2}} d \mu \\
& =\frac{\sqrt{1 / 2}}{\sqrt{2 \pi}} e^{\left[-\left(\frac{m+t}{2}\right)^{2}+\frac{t^{2}+m^{2}}{2}\right]} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \cdot \frac{1}{2}}} e^{-\frac{\left(\mu-\frac{m+t}{2}\right)^{2}}{2 \cdot \frac{1}{2}}} d \mu \\
& =\frac{\sqrt{1 / 2}}{\sqrt{2 \pi}} e^{\left[-\left(\frac{m+t}{2}\right)^{2}+\frac{t^{2}+m^{2}}{2}\right]} \cdot 1
\end{aligned}
$$

since the integral is over a normal PDF with mean $\frac{m+t}{2}$ and variance $\frac{1}{2}$.

## Solution for Problem EC

Thus, we have

$$
P(\mu \mid T=t)=\frac{\frac{1}{2 \pi} e^{-\frac{(\mu-m)^{2}+(t-\mu)^{2}}{2}}}{\frac{\sqrt{1 / 2}}{\sqrt{2 \pi}} e^{\left[-\left(\frac{m+t}{2}\right)^{2}+\frac{t^{2}+m^{2}}{2}\right]}}=\frac{1}{\sqrt{2 \pi \cdot \frac{1}{2}}} e^{-\frac{\left(\mu-\frac{m+t}{2}\right)^{2}}{2 \cdot \frac{1}{2}}} \sim \mathcal{N}\left(\frac{m+t}{2}, \frac{1}{2}\right)
$$

So, it's nothing more than a different normal distribution with $\mu=\frac{m+t}{2}$ and $\sigma^{2}=\frac{1}{2}$. This means that after a new observation, your new belief gets dragged in the direction of your observation, $T=t$, with increased confidence (variance decreases from 1 to $1 / 2$ ).
The key here is that your belief maintains the same functional form; which allows you to update it again after another observation $T=t^{\prime}$, and then another one, and so on. One can show that after $n$ observations, the belief is still normal with

$$
\mu_{n}=\frac{m+t_{1}+t_{2}+\cdots+t_{n}}{n+1} \text { and } \sigma_{n}^{2}=\frac{1}{n+1}
$$

which means that i) your measurement is going to be super accurate ( $\sigma_{n}^{2} \rightarrow 0$ as $n \rightarrow \infty$ ), and ii) your point estimate is going to be the sample mean (plus counting the mean of your prior belief, $m$, as one additional sample).

