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Problem 1

Problem 1 (5x4=20pts): Consider the pair of random variables X and Y that are
uniformly distributed in the region E = {(x,y) : |x| + |y| < 1}, i.e,

c ifx€E,
0 otherwise.

fxyy(X:x,Y:y):{

The following figure helps you to visualize the region E.

7

What's the value of the constant c?
What's the marginal PDF of X?
What's the conditional PDF of X given Y, for 0 <y <17

Are X and Y independent? Justify your answer. You will not receive any points
if you write only “yes” or “no”.

s
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Solution for Problem 1

1
.l=c-Arecaof E=c-V/2vV2=2c=>c= =

Alternatively, using the normalization axiom, and the symmetry of PDF:

1 pl—x T el 1
2/ / cdde:2c/ y dx:2c/ [(1T—x)—(x—1)]dx
0 Jx—1 0 0

x—1

%)
=4c(x— —
2

0

=2c=1=c=—
2

12 x+1 ,-1<x<0
_ 1—x _
fx(x) = / ldy 0<x<1 = 1-x ,0<x<1
x—1 2 0 ,otherwise
0 , otherwise
_ 1—|X| 7XE[_171]
o x ¢ [-1,1]
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Solution for Problem 1

3. Using a similar calculation we have

) = {1—|y yel-11]

0 Y ¢ [_171]
Thus,
fx,v(x,y)
— 7X€[071])y€[071)7 andy_]-SXSl_.y
fxiy(X|Y =y) = fr(y)
0 , otherwise

1—
0 ,otherwise

1/2
{/ ,XE[O,I],_}/E[O,I), andy_]-SXSl_y
y

We can verify this is a valid PDF:

1—
1 1—y 1 1
[
0o Jy—1 2(1—-y) 0 2(1—)’)y
1 1
= dy = =
/O ly y’g

_[ta-y (y—l)
dy = / 2(1_ T dy
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Solution for Problem 1

4. X and Y are independent if fx y(x,y) = fx(x) - fy(y). However, when
x,y €[0,1], fx,v(x,y) # fx(x) - fr(y), i.e:

#(1-x)1-y)

N =

Therefore, X and Y are not independent.
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Problem 2

Problem 2 (10pts): Let X and Y be two random variables, with var(X) = 4 and
var(Y) = 9. If we know that the two random variables Z =2X — Y and W =X 4+ Y
are independent, find p(X, Y), i.e., the correlation between X and Y.

Solution: Since Z and W are independent, we have cov(Z, W) = 0. Thus,

cov(Z,W)=cov(2X —= Y, X +Y)
= E[(2X — Y)(X + Y)] — E[2X — Y]E[X + Y]
= E[2X2 + XY — Y?] — (2E[X] — E[Y])(E[X] + E[Y])
= 2E[X?] + E[XY] — E[Y?] — 2E[X]? — E[X]E[Y] + E[Y]?
= 2(E[X?] — E[X]?) + (E[XY] - E[X]E[Y]) — (E[Y?] - E[YT?)
= 2var(X) + cov(X,Y) — var(Y)
=244 cov(X,Y)—9
=cov(X,Y)—-1
=0=cov(X,Y)=1

With this, we have all the components needed to calculate the correlation.

(X, Y) = cov(X,Y) N S

var(X)-var(Y) V4-9

| =

7/17



Problem 3

Problem 3 (545=10pts): A coin is biased so that its probability of landing on heads
is 20%. Suppose you flip it 20 times.

1. Using Markov's bound, find a bound for the probability it lands on heads at
least 16 times.

2. Since we know that the number of times the coin lands on its heads is a
Binomial random variable, we can calculate the exact probability of the
aforementioned event is 1.38 x 10~8. Therefore, you can see that the bound we
obtained is a loose one. Now, using Chebyshev’s bound, find a tighter bound for
this probability.

8/17



Solution for Problem 3

1. Let X denote the number of times the coin lands on its head. This is a binomial

random variable with n =20 and p = 0.2.
Thus, E[X] = np = 4. Using this in the Markov inequality we get

p(X > 16) < E[X] % —0.25

2. var(X)=np(l —p)=20-0.2-0.8=3.2
Using this in the Chebyshev inequality we have
var(X)
P(X - EIX]| 2 b) <

3.2
P(X =4 > b) < =5

P(X — 4] > b) = P(X —4 > b) + P(X 4 < —b)
=P(X>4+b)+P(X<4—b)
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Solution for Problem 3

Since we want to approximate P(X > 16), i.e., 4 + b = 16, let's set b = 12.

3.2
P(X>4+b)+P(X<4-b)< =
P(X > 16) + P(X < —8) < >2

= =" =02

3.2

P(X >16)+0< 2

( - )+ — 144

P(X > 16)+ < 0.022

This bound is much tighter than the Markov bound.
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Problem 4

Problem 4 (10pts): Let today’s high temperature be T. For this time of the year in
Ambherst, let's assume that T is a normal random variable with mean © = 50 and
variance 02 = 25. Let's say Andrew feels comfortable if today's high temperature is
between two integers A and B, i.e., A< T < B. He hasn't been here for long and is a
little unsure about what to expect. So his lower temperature threshold A is a discrete
random variable and takes two equally-likely values: 40 and 45. Similarly, his high
temperature threshold B is also a discrete random variable and takes two equally-likely
values: 55 and 60. Further assume that A and B are independent.

What is the probability that Andrew feels comfortable today?
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Solution for Problem 4
Since A and B are independent,

— L tor (A, B) € {(40,55), (40, 60), (45, 55), (45, 60)}

P(A,B) = P(A)- P(B) = i

N | =

1
2

Let Y denote the binary random variable that indicates whether Andrew feels
comfortable.

P(Y =1A=40,B=55)=P(A< T <B)=P(40 < T <55)
40 — 50 55 — 50
=P <T' <
( V25 T T V25 )
=o(1) = o(-2) = ¢(1) — [1 - ¢(2)]
= 0.84134 — (1 — 0.97725)
= 0.81859

where T is the standardized random variable.
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Solution for Problem 4

Similarly, we can calculate

P(Y = 1|A = 40, B = 60) = ®(2) — #(—2) = 0.95450
P(Y = 1|A = 45, B = 55) = ®(1) — &(—1) = 0.68268
P(Y = 1|A = 45, B = 60) = ®(2) — &(—1) = 0.81859

Using the total probability theorem, we have
1|A = 40, B = 55)
1]JA=40,B =60

)
1|A = 45, B = 55)
=1|A = 45,B = 60)

P(Y =1) = P(A =40, B = 55) - P(
+ P(A = 40,B = 60) - P(
+ P(A =45 B =55) P(
+ P(A =45 B =60) - P(
= 3.27436/4 = 0.81859

Y
Y
Y
Y

Alternatively, we could have used ®(-) in our calculations, to get to the same result:

P(Y =1) = &(1) + ®(2) — 1 = 0.81859
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Problem EC

Problem EC (10pts): Following the setup of Problem 4, let today’s high temperature
be T. Assume that T is a normal random variable with mean p and variance o2 = 1.
Let's say you don't know today's date, so your belief about u follows a normal
distribution with mean m and variance 62 = 1, i.e., P(u) = N(m,1). Now, at the end
of the day, you observe that today's high temperature is actually t. Given this
information, what is your new belief of y, i.e., what is P(u|T = t)?

Hint: It has the same functional form as your initial belief, just different moments.
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Solution for Problem EC

Quick reminder of PDF for normal random variables:

(%) 1 _x=n)?
x(x) = e 20
V2no?
P(u, T=t P(T =t|p)-P
Using Bayes' rule, we know that P(u|T = t) = (, ) = ( 1) - P(r)
P(T =1t) P(T =1t)
The terms in this equation that we know are
1 (=m)® 1 (=)
P = e 2 and P(T =1t = e 2
(1) ez ( 1) ez
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Solution for Problem EC

So, we need to calculate P(T = t). We can calculate this by marginalizing over p:

PT=0) = [T P =tdn= [ P(T = tlu)P()du

o 1 ,% 1 ,(ufzm)zd 1 oo ,wd
= ——e e w=— e M

—oc V27 V2r 27 J oo

1 oo _2—2pttp?+u®—oumim? 1 oo _2u?—2u(trm)+el+m?
= — e 2 dp = — e 5 du

27 J—oo 21 J oo

2 2 2 2

1 foo u 2 pu(e+m)+ B } 1 [oo [u —p(em) ()2 (M2, e,
= —/ dp = — e dp

2m 21 J—oo

1 _(, _ mtt\2 [, mity2, t°4m ]
= — /OO e (“ 2 ) e ( 2 ) du

27 J— o

1 [7(M)Z+7t2+m2} oo m+t)2
=— 2 2 / o (u=m3) du

27 — oo

+t)2
2 _ (“’mz )
172 { (m+t)+t +m? . o1

= e / e 2 dp

V2
_ 1/26[_(m3-t)2+t -;m }.1

V2

since the integral is over a normal PDF with mean and variance —.
2
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Solution for Problem EC

Thus, we have

p - e m e 1 (n—mfty? 1
1, - m+t
P(uIT = 1) = —2= o = e an ()
2 [t =] for L 2 2
V2 € 2
So, it's nothing more than a different normal distribution with n = M and o2 = %

This means that after a new observation, your new belief gets dragged in the direction
of your observation, T = t, with increased confidence (variance decreases from 1 to
1/2).

The key here is that your belief maintains the same functional form; which allows you
to update it again after another observation T = t’ , and then another one, and so
on. One can show that after n observations, the belief is still normal with

m+t+to+---+ 1ty 2 1
Un = and o5, = ——
n+1 n+1

which means that i) your measurement is going to be super accurate (02 — 0 as
n — o00), and ii) your point estimate is going to be the sample mean (plus counting

the mean of your prior belief, m, as one additional sample).
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