Discussion 8: Review for Midterm 2

Lectures 12-20

Assan Toleuov based on Practice Exam of Fall 2018
March 28, 2019
University of Massachusetts Amherst

Table of Contents

1. Preliminaries
2. Quiz 6 Review
3. Practice Exam Problems, Fall 2018

Preliminaries

Reminders

1. Midterm 2 is in-class tomorrow: read Andrew's email about the logistics

Quiz 6 Review

Problem \#2

Problem Statement

The PMF of two discrete random variables, X and Y , is given below. What is $\operatorname{corr}(\mathrm{X}, \mathrm{Y})$?

$x \backslash y$	12	15	20
12	a	0.05	0.1
15	0.05	$0.15-\mathrm{a}$	0.35
20	0	0.20	0.10

where $a \in\{0.01,0.02,0.03,0.04,0.05\}$.

Problem \#4

Problem Statement

The PDF of two continuous random variables, X and Y, is given below. What is corr (X, Y) ?

$$
f(X)= \begin{cases}2 & \text { if } x, y \in(0,+\infty) \text { and } x+y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Practice Exam Problems, Fall 2018

Problem \#1.1

Problem Statement

Let us assume that X is a random variable with the following probability density function. Find the value of a.

$$
f_{X}(x)=\left\{\begin{array}{lc}
-a x, & -2 \leq x \leq 0 \\
2 a x^{2}, & 0 \leq x \leq 3 \\
0, & \text { otherwise }
\end{array}\right.
$$

Problem \#1.2

Problem Statement

Let us assume that X is a random variable whose probability density function is depicted in the following figure. Find the value of z.

Problem \#2

Problem Statement

Suppose that we have two independent exponential random variables X and Y. The probability density functions of X and Y are:

$$
f_{X}(x)= \begin{cases}\alpha e^{-\alpha x} & \text { if } 0 \leq x \leq \infty \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\beta e^{-\beta y} & \text { if } 0 \leq y \leq \infty \\ 0 & \text { otherwise }\end{cases}
$$

Find the probability that X is greater than Y.

Problem \#3.1

Problem Statement

Prove the following statement:
$\operatorname{Var}(\mathrm{X}+\mathrm{Y}+\mathrm{Z})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})+\operatorname{Var}(\mathrm{Z})+$ $2 \operatorname{Cov}(X, Y)+2 \operatorname{Cov}(X, Z)+2 \operatorname{Cov}(Y, Z)$.

Problem \#3.2

Problem Statement

Prove the following statement:

$$
\begin{gathered}
\operatorname{cov}(X+Y, Z+K)= \\
\operatorname{cov}(X, Z)+\operatorname{cov}(X, K)+\operatorname{cov}(Y, Z)+\operatorname{cov}(Y, K)
\end{gathered}
$$

Problem \#4

Problem Statement

Consider a modified three-finger morra where Alice picks an action $a \in\{1,2,3\}$ and Bob picks an action $b \in\{3,4,5\}$. Bob pays Alice $\$(2 a+b)$ if $a+b$ is even, and Alice pays Bob $\$(2 a+b)$ if $a+b$ is odd. If Bob plays 3 finger with probability r and 4 fingers with probability s and 5 fingers with probability $1-r-s$. What are the values of r and s that make Alice's choices indifferent in terms of her payoff?

Problem \#5.1

Problem Statement

Suppose it is known that the number of items produced in a factory during a week is a random variable with mean of 100 and variance of 20 . What are the upper bounds for the probability that this week's production will exceed 130? Find two upper bounds using both the Markov's inequality and the Chebyshev's inequality.

Problem \#5.2

Problem Statement

Suppose again that it is known that the number of items produced in a factory during a week is a random variable with mean of 100 and variance of 20. Considering the probability that this week's production will exceed an arbitrary number N, what value range of N would make Markov's bound tighter than the Chebyshev's bound?

Problem \#5.3

Problem Statement

The mean values of three normal random variables X, Y, Z are 1,2 , and 3 , respectively. If $P(3<X+3 Y-Z<5)=0.4$, find $P(0.2 X+0.6 Y-0.2 Z<0.6)$.

FIN

