Discussion 6

3.1 Continuous Random Variables and PDFs
3.2 Cumulative Distribution Functions
3.3 Normal Random Variables
3.4 Joint PDFs of Multiple Random Variables

Qingyang Xue
March 7, 2019
University of Massachusetts Amherst

Table of Contents

1. Preliminaries
2. Quiz 4 Review
3. Practice Problems
4. Helpful Quiz (Time Permitting)

Preliminaries

Reminders

1. Moodle quiz \#5 is available, due Fri, Mar. 8

Reminders

1. Moodle quiz \#5 is available, due Fri, Mar. 8
2. HW \#2 is graded. You can submit regrade requests within a week.

Quiz 4 Review

Problem \#1

Problem Statement

Suppose you toss two dices at the same time. If at least one of them is five or six, you win. You toss c times. What is your expected number of wins?

Problem \#1

Problem Statement

Suppose you toss two dices at the same time. If at least one of them is five or six, you win. You toss c times. What is your expected number of wins? $\quad \frac{5}{9} c$

Problem \#1

Problem Statement

Suppose you toss two dices at the same time. If at least one of them is five or six, you win. You toss c times. What is your expected number of wins? $\quad \frac{5}{9} c$

Let p be the probability of having five or six for at least one dice.

Problem \#1

Problem Statement

Suppose you toss two dices at the same time. If at least one of them is five or six, you win. You toss c times. What is your expected number of wins? $\quad \frac{5}{9} c$

Let p be the probability of having five or six for at least one dice.
$p=\frac{1}{3} \cdot \frac{1}{3}$ (both dice $\left.\geq 5\right)+\frac{1}{3} \cdot \frac{2}{3}$ (only first dice ≥ 5)
$+\frac{2}{3} \cdot \frac{1}{3}($ only second dice $\geq 5)=\frac{5}{9}$

Problem \#1

Problem Statement

Suppose you toss two dices at the same time. If at least one of them is five or six, you win. You toss c times. What is your expected number of wins? $\quad \frac{5}{9} c$

Let p be the probability of having five or six for at least one dice.
$p=\frac{1}{3} \cdot \frac{1}{3}$ (both dice $\left.\geq 5\right)+\frac{1}{3} \cdot \frac{2}{3}$ (only first dice ≥ 5)
$+\frac{2}{3} \cdot \frac{1}{3}$ (only second dice $\left.\geq 5\right)=\frac{5}{9}$
Repeating the toss c times generates a binomial RV, whose expectation is $n p=\frac{5}{9} c$

Problem \#5

Problem Statement

Two coins are simultaneously tossed until at least one of them comes up a head. The first coin comes up a head with probability p_{1}, and the second with probability 0.4 . All tosses are assumed independent. What is the variance of the number of tosses?

Problem \#5

Problem Statement

Two coins are simultaneously tossed until at least one of them comes up a head. The first coin comes up a head with probability p_{1}, and the second with probability 0.4 . All tosses are assumed independent. What is the variance of the number of tosses?
$\operatorname{Var}=\frac{1-p}{p^{2}}$, where $p=1-0.6\left(1-p_{1}\right)$

Problem \#5

Problem Statement

Two coins are simultaneously tossed until at least one of them comes up a head. The first coin comes up a head with probability p_{1}, and the second with probability 0.4 . All tosses are assumed independent. What is the variance of the number of tosses?

$$
\operatorname{Var}=\frac{1-p}{p^{2}}, \text { where } p=1-0.6\left(1-p_{1}\right)
$$

This is a geometric RV, where an event is "successful" if one of the two coins show a head.

Problem \#5

Problem Statement

Two coins are simultaneously tossed until at least one of them comes up a head. The first coin comes up a head with probability p_{1}, and the second with probability 0.4 . All tosses are assumed independent. What is the variance of the number of tosses?

$$
\operatorname{Var}=\frac{1-p}{p^{2}}, \text { where } p=1-0.6\left(1-p_{1}\right)
$$

This is a geometric RV, where an event is "successful" if one of the two coins show a head.

$$
\begin{aligned}
p & =P\left(\left\{H_{1}, T_{2}\right\}\right)+P\left(\left\{T_{1}, H_{2}\right\}\right)+P\left(\left\{H_{1}, H_{2}\right\}\right) \\
& =1-P\left(\left\{T_{1}, T_{2}\right\}\right)=1-0.6\left(1-p_{1}\right)
\end{aligned}
$$

Problem \#5

Problem Statement

Two coins are simultaneously tossed until at least one of them comes up a head. The first coin comes up a head with probability p_{1}, and the second with probability 0.4 . All tosses are assumed independent. What is the variance of the number of tosses?

$$
\text { Var }=\frac{1-p}{p^{2}}, \text { where } p=1-0.6\left(1-p_{1}\right)
$$

This is a geometric RV, where an event is "successful" if one of the two coins show a head.

$$
\begin{aligned}
p & =P\left(\left\{H_{1}, T_{2}\right\}\right)+P\left(\left\{T_{1}, H_{2}\right\}\right)+P\left(\left\{H_{1}, H_{2}\right\}\right) \\
& =1-P\left(\left\{T_{1}, T_{2}\right\}\right)=1-0.6\left(1-p_{1}\right)
\end{aligned}
$$

Variance for geometric RV is $\frac{1-p}{p^{2}}$.

Problem \#6

Problem Statement

A contractor purchases a shipment of 102 transistors. It is his policy to randomly select and test 10 of these transistors and to keep the shipment only if at least 9 of the 10 are in working condition. If we know that 20% of the transistors have defects, what is the probability the contractor will keep all the transistors?

Problem \#6

Problem Statement

A contractor purchases a shipment of 102 transistors. It is his policy to randomly select and test 10 of these transistors and to keep the shipment only if at least 9 of the 10 are in working condition. If we know that 20% of the transistors have defects, what is the probability the contractor will keep all the transistors? 0.38

Problem \#6

Problem Statement

A contractor purchases a shipment of 102 transistors. It is his policy to randomly select and test 10 of these transistors and to keep the shipment only if at least 9 of the 10 are in working condition. If we know that 20% of the transistors have defects, what is the probability the contractor will keep all the transistors? 0.38

This is a binomial RV where $p=1-20 \%=0.8$

Problem \#6

Problem Statement

A contractor purchases a shipment of 102 transistors. It is his policy to randomly select and test 10 of these transistors and to keep the shipment only if at least 9 of the 10 are in working condition. If we know that 20% of the transistors have defects, what is the probability the contractor will keep all the transistors? 0.38

This is a binomial RV where $p=1-20 \%=0.8$ He will keep all purchased transistors when 9 or 10 samples are in working conditions

Problem \#6

Problem Statement

A contractor purchases a shipment of 102 transistors. It is his policy to randomly select and test 10 of these transistors and to keep the shipment only if at least 9 of the 10 are in working condition. If we know that 20% of the transistors have defects, what is the probability the contractor will keep all the transistors? 0.38

This is a binomial RV where $p=1-20 \%=0.8$ He will keep all purchased transistors when 9 or 10 samples are in working conditions
$P(X=9$ or $X=10)=\binom{10}{9} 0.2^{1} 0.8^{9}+\binom{10}{10} 0.2^{0} 0.8^{10}=0.3758$

Problem \#7

Problem Statement

The distribution of a random variable X is shown in the table below and the expectation $E[X]=2$. What is the maximum value of $a b$?

x	a	2	b
$P(X=x)$	0.2	0.3	0.5

Problem \#7

Problem Statement

The distribution of a random variable X is shown in the table below and the expectation $E[X]=2$. What is the maximum value of $a b$?
4.9

x	a	2	b
$P(X=x)$	0.2	0.3	0.5

Problem \#7

Problem Statement

The distribution of a random variable X is shown in the table below and the expectation $E[X]=2$. What is the maximum value of $a b$? 4.9

x	a	2	b
$P(X=x)$	0.2	0.3	0.5

$E[X]=0.2 a+2 \cdot 0.3+0.5 b=2 \Longrightarrow b=2.8-0.4 a$

Problem \#7

Problem Statement

The distribution of a random variable X is shown in the table below and the expectation $E[X]=2$. What is the maximum value of $a b$? 4.9

x	a	2	b
$P(X=x)$	0.2	0.3	0.5

$E[X]=0.2 a+2 \cdot 0.3+0.5 b=2 \Longrightarrow b=2.8-0.4 a$ $a b=a(2.8-0.4 a)$

Problem \#7

Problem Statement

The distribution of a random variable X is shown in the table below and the expectation $E[X]=2$. What is the maximum value of $a b$?
4.9

x	a	2	b
$P(X=x)$	0.2	0.3	0.5

$E[X]=0.2 a+2 \cdot 0.3+0.5 b=2 \Longrightarrow b=2.8-0.4 a$

$$
a b=a(2.8-0.4 a)
$$

Taking the derivative of $a(2.8-0.4 a)$ w.r.t. a and making the derivative zero give us the value of a that maximizes $a b$.

Problem \#7

Problem Statement

The distribution of a random variable X is shown in the table below and the expectation $E[X]=2$. What is the maximum value of $a b$? 4.9

x	a	2	b
$P(X=x)$	0.2	0.3	0.5

$E[X]=0.2 a+2 \cdot 0.3+0.5 b=2 \Longrightarrow b=2.8-0.4 a$

$$
a b=a(2.8-0.4 a)
$$

Taking the derivative of $a(2.8-0.4 a)$ w.r.t. a and making the derivative zero give us the value of a that maximizes $a b$.
This yields $-0.8 a+2.8=0 \Longrightarrow a=3.5$

Problem \#7

Problem Statement

The distribution of a random variable X is shown in the table below and the expectation $E[X]=2$. What is the maximum value of $a b$? 4.9

x	a	2	b
$P(X=x)$	0.2	0.3	0.5

$E[X]=0.2 a+2 \cdot 0.3+0.5 b=2 \Longrightarrow b=2.8-0.4 a$

$$
a b=a(2.8-0.4 a)
$$

Taking the derivative of $a(2.8-0.4 a)$ w.r.t. a and making the derivative zero give us the value of a that maximizes $a b$.
This yields $-0.8 a+2.8=0 \Longrightarrow a=3.5$
Then $a b=3.5(2.8-0.4 \cdot 3.5)=4.9$

Practice Problems

Question \#1

Problem Statement

Alvin throws darts at a circular target of radius r and is equally likely to hit any point in the target. Let X be the distance of Alvin's hit from the center. Find the PDF, the mean, and the variance of X. Hint: Calculate CDF first.

Question \#1 Solution

Find the PDF, the mean, and the variance of X.

Question \#1 Solution

Find the PDF, the mean, and the variance of X.
For $x \in[0, r], F_{X}(x)=P(X \leq x)=\frac{\pi x^{2}}{\pi r^{2}}=\left(\frac{x}{r}\right)^{2}$

Question \#1 Solution

Find the PDF, the mean, and the variance of X.
For $x \in[0, r], F_{X}(x)=P(X \leq x)=\frac{\pi x^{2}}{\pi r^{2}}=\left(\frac{x}{r}\right)^{2}$
By differentiating, we obtain the PDF

$$
f_{X}(x)= \begin{cases}\frac{2 x}{r^{2}} & \text { if } 0 \leq x \leq r \\ 0 & \text { otherwise }\end{cases}
$$

Question \#1 Solution

Find the PDF, the mean, and the variance of X.
For $x \in[0, r], F_{X}(x)=P(X \leq x)=\frac{\pi x^{2}}{\pi r^{2}}=\left(\frac{x}{r}\right)^{2}$
By differentiating, we obtain the PDF

$$
f_{X}(x)= \begin{cases}\frac{2 x}{r^{2}} & \text { if } 0 \leq x \leq r \\ 0 & \text { otherwise }\end{cases}
$$

We have

$$
E[X]=\int_{0}^{r} \frac{2 x^{2}}{r^{2}} d x=\frac{2 r}{3}, \quad E\left[X^{2}\right]=\int_{0}^{r} \frac{2 x^{3}}{r^{2}} d x=\frac{r^{2}}{2} .
$$

Question \#1 Solution

Find the PDF, the mean, and the variance of X.
For $x \in[0, r], F_{X}(x)=P(X \leq x)=\frac{\pi x^{2}}{\pi r^{2}}=\left(\frac{x}{r}\right)^{2}$
By differentiating, we obtain the PDF

$$
f_{X}(x)= \begin{cases}\frac{2 x}{r^{2}} & \text { if } 0 \leq x \leq r \\ 0 & \text { otherwise }\end{cases}
$$

We have

$$
E[X]=\int_{0}^{r} \frac{2 x^{2}}{r^{2}} d x=\frac{2 r}{3}, \quad E\left[X^{2}\right]=\int_{0}^{r} \frac{2 x^{3}}{r^{2}} d x=\frac{r^{2}}{2} .
$$

So

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=\frac{r^{2}}{2}-\frac{4 r^{2}}{9}=\frac{r^{2}}{18} .
$$

Question \#2

Problem Statement

Jane goes to the bank to make a withdrawal, and is equally likely to find 0 or 1 customers ahead of her. The service time of the customer ahead, if present, is exponentially distributed with parameters λ.
What is the CDF of Jane's waiting time T ? Hint: use total probability theorem.

$$
F_{T}(t)=P(T \leq t)=\cdots
$$

An exponentially distributed random variable X with parameter $\lambda(\lambda>0)$ has a PDF of the form

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Question \#2 Solution

What is the CDF of Jane's waiting time T ?
Let X be the number of customers found. For $t<0$, we have $F_{T}(t)=0$.

Question \#2 Solution

What is the CDF of Jane's waiting time T ?
Let X be the number of customers found. For $t<0$, we have $F_{T}(t)=0$. For $t \geq 0$,

$$
F_{T}(t)=P(T \leq t)=\frac{1}{2} P(T \leq t \mid X=0)+\frac{1}{2} P(T \leq t \mid X=1)
$$

Question \#2 Solution

What is the CDF of Jane's waiting time T ?
Let X be the number of customers found. For $t<0$, we have $F_{T}(t)=0$. For $t \geq 0$,

$$
F_{T}(t)=P(T \leq t)=\frac{1}{2} P(T \leq t \mid X=0)+\frac{1}{2} P(T \leq t \mid X=1)
$$

Since

$$
\begin{aligned}
& P(T \leq t \mid X=0)=1, \\
& P(T \leq t \mid X=1)=\int_{0}^{t} \lambda e^{-\lambda t} d t=1-e^{-\lambda t}
\end{aligned}
$$

Question \#2 Solution

What is the CDF of Jane's waiting time T ?
Let X be the number of customers found. For $t<0$, we have $F_{T}(t)=0$. For $t \geq 0$,

$$
F_{T}(t)=P(T \leq t)=\frac{1}{2} P(T \leq t \mid X=0)+\frac{1}{2} P(T \leq t \mid X=1)
$$

Since

$$
\begin{aligned}
& P(T \leq t \mid X=0)=1, \\
& P(T \leq t \mid X=1)=\int_{0}^{t} \lambda e^{-\lambda t} d t=1-e^{-\lambda t}
\end{aligned}
$$

We obtain

$$
F_{T}(t)= \begin{cases}\frac{1}{2}\left(2-e^{-\lambda t}\right) & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Helpful Quiz (Time Permitting)

Normal (Gaussian) Random Variables

1. PDF of a normal random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

Normal (Gaussian) Random Variables

1. PDF of a normal random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

Normal (Gaussian) Random Variables

1. PDF of a normal random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

2. The range of normal RV:

Normal (Gaussian) Random Variables

1. PDF of a normal random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

2. The range of normal RV:

$$
(-\infty, \infty)
$$

Normal (Gaussian) Random Variables

1. PDF of a normal random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

2. The range of normal RV:

$$
(-\infty, \infty)
$$

3. The mean of a normal RV $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

Normal (Gaussian) Random Variables

1. PDF of a normal random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

2. The range of normal RV:

$$
(-\infty, \infty)
$$

3. The mean of a normal $\operatorname{RV} X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

Normal (Gaussian) Random Variables

1. PDF of a normal random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

2. The range of normal RV:

$$
(-\infty, \infty)
$$

3. The mean of a normal $\operatorname{RV} X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
\mu
$$

4. The variance of normal $\mathrm{RV} X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

Normal (Gaussian) Random Variables

1. PDF of a normal random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

2. The range of normal RV:

$$
(-\infty, \infty)
$$

3. The mean of a normal $\operatorname{RV} X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
\mu
$$

4. The variance of normal $\mathrm{RV} X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
\sigma^{2}
$$

FIN

